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. . .' s iven in table 10. I, panel O. Column 2 shOws the TFP gro~th
Noles: Column I shows the growlh rale 01 GOP a. g 3 ad'usts for res onscs of physical capilal by multtplylllg
rate indicated for the dual column III table 10.2. Column. I hJ h n p table 10 I panel O. Column 4 adJuSls

b 1/( I ) wbere et is Ihe captta s are s ow to . . . .
the TFP growlh rate y - et • .' Iti I in the TFP growth rale by 1/0.3, that IS, by assumtog
for responses of physical and human captlal by mu p \ g . show the percentages of the growth rate of GOP

broad capital share of et = 0.7. The numbers to parent escs .
:ccounted for by each measure of TFP growth.

The corrections made in this section surely overstate the importa~ce ~f technolo~ic~1
because they assume that all of the endogenous responses of capital occur .Wlt~In

p~ogre~sd of o~servation The calculations are not meant to offer a realistic way of adjusting

~h: ~;Oestimates to ma~e causality statements about ultimate sources o~ ~rowth b~t, r~the;
to warn the reader that such claims should be avoided. A sm.all posItive n~m e.r or g
.' . cl'ple consistent with a situation in which technological progress IS ultlmate~y
IS In pnn , . . . h .t t' n In

, . f II rt f GOP growth but it is also consistent Wit a Sl ua 10
responSIble or a sma pa 0' ounting
which it is ultimately responsible for the entirety of GOP ~r?wth.Thus the same acc

decomposition is consistent with two entirely different VISIOns of gro~~h.
Growth accounting may be able to provide a mechanical decomposItion .of the growth ?f

. t owth of an array of inputs and growth of total factor productiVIty. Successful
output In 0 gr . I t f eful
accounting of this sort is likely to be useful and may stimulate the deve op~en 0 us

economic theories of growth. Growth accounting does not, however, ~onstltutedat:e~~
of rowth because it does not attempt to explain how the changes In mputs an -

g ements in total factor productivity relate to elements-such as aspects of preferences,

~:~~noIOgy, and government policies-that can reasonably be viewed as fundamentals.

Table 10.3 I'C '·1
TFP Growth Adjusted for Endogenous Responses 0 aptla

0.027 0.043
(37%) (59%)
0.022 0.043
(25%) (49%)
0.015 0.021
(14%) (20%)
0.037 0.050
(39%) (53%)

A key property of the neoclassical growth model is its prediction ofconditional convergence,
a concept that applies when the growth rate of an economy is positively related to the
distance between this economy's level of income and its own steady state. Conditional
convergence should not be confused with absolute convergence, a concept that applies
when poor economies tend to grow faster than rich ones (and, therefore, the poor tend
to "catch up"). It is possible that two economies converge in the conditional sense (the

growth rate of each economy declines as it approaches its own steady state) but not in the
absolute sense (the rich economy can grow faster than the poor one if the former is further
below its own steady state). The two concepts are identical if a group of economies tend to
converge to the same steady state. We found in chapters I and 2 that neoclassical economies
with similar tastes and technologies converge to the same steady state. Therefore, in this
case, the neoclassical growth model predicts absolute convergence; that is, poor economies
tend to grow faster than rich ones. Thus one way to test the convergence hypothesis is to
check whether economies with similar tastes and technologies-economies that are likely
to converge to the same steady state--eonverge in an absolute sense.

In this chapter, we test the convergence predictions of the neoclassical growth model by
looking at the behavior of regions within countries. Although differences in technology,
preferences, and institutions exist across regions, these differences are likely to be smaller
than those across countries. Finns and households of different regions within a single
country tend to have access to similar technologies and have roughly similar tastes and

cultures. Furthennore, the regions share a common central government and therefore have
similar institutional setups and legal systems. This relative homogeneity means that regions
are more likely to converge to similar steady states. Hence, absolute convergence is more
likely to apply across regions within countries than across countries.

It can be argued that using regions to test the convergence hypothesis is incorrect because
inputs tend to be more mobile across regions than across countries. Legal, cultural, linguistic,
and institutional barriers to factor movements tend to be smaller across regions within a
country than across countries. Hence, the assumption of a closed economy-a standard
condition of the neoclassical growth model-is likely to be violated for regional data sets.
However, we found in chapter 3 that the dynamic properties of economies that are open to

capital movements can be similar to those of closed economies if a fraction of the capital
stock-which includes human capital-is not mobile or cannot be used as collateral in
interregional or international credit transactions. The speed of convergence is increased by
the existence of capital mobility but remains within a fairly narrow range for reasonable
values of the fraction of capital that is mobile. Another result is that a technology without
diminishing returns to capital-that is, some version of the AK technology-implies a zero
convergence speed whether the economy is open or closed.
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(11.1 ) (11.3)

We also found in chapter 9 thai the allowance for migration in neoclassical growth

models tends to accelerate the process of convergence. The change is, again, a quantitative

m?d~fication to the speed .01' convergence. The main point, therefore, is that although regions

wlthm a country are relatively open to flows of capital and persons, the neoclassical growth
model still provides a useful framework for the empirical analysis.

11.1 Two Concepts of Convergence

Two concepts of convergence appear in discussions of economic growth across countries or
regions. In one view (Barro, 1984, chapter 12; Baumol, 1986; DeLong, 1988; Barro, 1991 a;

Barro and Sala-i-Martin, 1991, 1992a, 1992b), convergence applies if a poor economy

tends to grow faster than a rich one, so that the poor country tends to catch up to the rich

one in terms of levels of per capita income or product. This property corresponds to our
concept of f3 convergence.' The second concept (Easterlin, 1960a; Borts and Stein, 1964,

chapter 2; Streissler, 1979; Barro, 1984, chapter 12; Baumol, 1986; Dowrick and Nguyen,

I~89; Barro and Sala-i-Martin, 1991, 1992a, I992b) concerns cross-sectional dispersion. In

thiS context, convergence occurs if the dispersion-measured, for example, by the standard
deviation of the logarithm of per capita income or product across a group of countries or

regions--declines over time. We call this process a conver/?ence. Convergence of the first
kind (poor countries tending to grow faster than rich ones) tends to generate convergence

of the second kind (reduced dispersion of per capita income or product), but this process is
offset by new disturbances that tend to increase dispersion.

To make the relation between the two concepts more precise, we consider a version of the

growth equation predicted by the neoclassical growth model of chapter 2. Equation (2.35)
relates the growth rate of income per capita for economy i between two points in time to

the initial level of income. We apply equation (2.35) here to discrete periods of unit length
(say years), and we also augment it to include a random disturbance:

10g(Yi,IYU-I) = ai, - (1 - e- f3 ) ·log(Y,.t_l) + Ujt

where the subscript t denotes the year, and the subscript i denotes the country or region.
The theory implies thatthe intercept, ail, equals Xi +(1- e-/3) . [Iog(y*) + Xi' (t - I)J where

yt is the steady-state level of Yi and Xi is the rate of technological' progress. We ~ssume
that the random variable Uir has °mean, variance a;r' and is distributed independently of
10g(Yi,t_l), Ujr for j =1= i, and lagged disturbances,

1. This phenomenon is sometimes described as "regression toward the mean."

We can think of the random disturbance as reflecting unexpected changes in produc­

tion conditions or preferences. We begin by treating the coefficient air as the same for all

economies so that ail =(11' This specification means that the steady-state value, Yi, and
the rate of exogenous technological progress, Xj, are the same for all economies. This as­

sumption is more reasonable for regional data sets than for international data sets; it is

plausible that different regions within a country are more similar than different countries
with respect to technology and preferences.

If the intercept air is the same in all places and f3 > 0, equation (11.1) implies that poor
economies tend to grow faster than rich ones. The neoclassical growth models ofchapterS I

and 2 made this prediction. The AK model discussed in chapter 4 predicts, in contrast, a°value for f3 and, consequently, no convergence of this type. The same conclusion holds
for various endogenous growth models (chapters 6 and 7) that incorporate a linearity in the
production function,2

Since the coefficient on 10g(Yi,r_,) in equation (11.1) is less than 1. the convergence is not

strong enough to eliminate the serial correlation in 10g(Yir). Put alternatively, in the absence
of random shocks, convergence to the steady state is direct and involves no oscillations or

overshooting. Therefore, for a pair of economies, the one that starts out behind is predicted

to remain behind at any future date.

Let 0,2 be the cross-economy variance of 10g(Yir) at time t. Equation (11.l) and the

assumed properties of Uir imply that a,2 evolves over time in accordance with the first-order

difference equation3

( 11.2)

where we have assumed that the cross section is large enough so that the sample variance

of log(y,.,) corresponds to the population variance.

If the variance of the disturbance, a;" is constant over time (o;r =0; for all t), the
solution of the first-order difference equation (11.2) is

a2 = a; + (a 2_ aJ ). e-2pr
r 1 _ e-2fJ 0 1 _ e-2/3

where aJ is the variance of 10g(yiO)' (It can be readily verified that the solution in equa­

tion [11.3] satisfies equation [I1.2J,) Equation (11.3) implies that a,2 monotonically ap­

proaches its steady-state value, (12 = (1; /0 - e-2/3), which rises with 0-; but declines with

2. We showed, however, in chapter 4 that (3 convergence would apply if the technology were asymptotically AK
but featured diminishing returns to capital for finite K.

3. To derive equation (11.2). add log(YI.t-l) to both sides of equation (11.1), compute the variance, and use the
condition that the covariance between Uit and 10g(Yi,I_I) is o.
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Figure Il.I

Th,cor~ticalbehavior of dispersion. The Ilgurc shows thc dispersion of per capita producl. measured as Ihe vari­
.1I1ce 01 lhe log of per caplla producl across economics. Allhough fJ convcrgencc is assumed 10 apply the dispers'
may rail. rise, or rcmain conslant. depending 011 whclher il slarts above. hclow. or at ils steadY-Slate'value ',,2 .;~n
hgure assumes fJ = 0.02 per year. - ., e

the convergence coefficient, fJ. Over time, u,2 falls (or rises) if the initial value uJ is greater

than (or I~ss than) the.steadtstate value, u 2
• Thus a positive coefficient fJ (fJ convergence)

does not Imply a falling a, (u convergence). To put it another way, fJ convergence is a
necessary but not a sufficient condition for u convergence.

Figu.re 11.1 shows the time pattern of a,2 with uJ above or below u 2. The convergence

coeffiCient used, fJ = 0.02 per year, corresponds to the estimates that we report in a later

section. With this value of fJ, the cross-sectional variance is predicted to fall or rise over

time at a slow rate. In particular, if uJ departs substantially from the steady-state value u2

then it takes about lOa years for a,2 to get close to u 2. ' ,

The cross-sectional dispersion of 10g(Yi,) is sensitive to shocks that have a common

influence on subgroups of countries or regions. These kinds of disturbances violate the

condition that Ui, in equation (I 1.1) is independent of U j, for i =I j. To the extent that these

shocks tend to benefit or hurt regions with high or low income (that is, to the extent that
the shocks are correlated with the explanatory variable), the omission of such shocks from
the regressions will tend to bias the estimates of fJ.

Examples are shocks that generate changes in the terms of trade for commodities. For

the .United States, an ~xa~ple is the sharp drop in the relative prices of agricultural goods
dunng the 1920s. ThiS disturbance had an adverse effect on the incomes of agricultural

(11.4)

(11.5)

where 'Pi measures the effect of the aggregate disturbance on the growth rate in region i.

If a positive value of S, signifies an increase in the relative price of oil, then 'Pi would be

positive for countries or regions that produce a lot of oil." The coefficient 'Pi would tend to

be negative for economies that produce goods. such as automobiles, that use oil as an input.

We think of the coefficient 'Pi as distributed cross sectionally with mean ijJ and variance a;.
Iflog(Yi.,_I) and 'Pi are uncorrelated, estimates of fJ in equation (11.4) would be consistent

when the shock is omitted from the regression. If IOg(Yi.,_1 ) and 'Pi are positively correlated,

the coefficient estimated by OLS on 10g(Yi.,-I) in equation (11.4) would be positively

or negatively biased as S, is positive or negative. As an example, if oil producers have

relatively high per capita income, an increase in oil prices will benefit the relatively rich

states. Consequently, an OLS regression of growth on initial income will underestimate the

true convergence coefficient. In the empirical analysis of the next sections, we hold constant

proxies for S, as an attempt to obtain consistent estimates of the convergence coefficients.

Equation (11.4) implies that the variance of the log of per capita income evolves as

2 _ -2fJ 2 2 2 2 2 -fJ [I (u, -e ,u,_I+uu,+S, ,urp+ S,·e ·cov OgYi,l-I),'Pi]

regions relative to the incomes of industrial regions. We can think also of the two oil price

increases of the 1970s and the price decline of the 1980s. These shocks had effects in the

same direction on the incomes of oi I-producing regions relative to other regions. Another

example for the United States is the Civil War. This shock had a strong adverse impact on

the incomes of southern states relative to the incomes of northern states.

Formally, let S, be a random variable that represents an eeonomy-wide disturbance for

period t. For example, S, could retlect the relative price of oil as determined on world

markets. Then equation (11.1) can be modified to

where the variances and covariances are conditioned on the current and past realizations of

the aggregate shocks, S" S,_I , .... If cov[log(Yi,l- d, 'Pi] equals a-that is, if the shock is
uncorrelated with initial income--equation (I 1.5) corresponds to equation (I 1.2), except

that realizations of S, effectively move a;r around over time. A temporarily large value of

S, raises u,2 above the long-run value a 2 that corresponds to a typical value of St. Therefore,

in the absence of a new shock, u,2 returns gradually toward a 2, as shown in figure 11.1.

4. More precisely. this shock would have a positive effecl on the real income derived from the countries or regions
that produce a lot of oil. This income may be owned by "foreigners" and appear as part of the net factor payments
from "abroad," the lermlhat differentiates GNP from GOP. For example, a substantial fraction of the capital inputs
of Wyoming is owned by residents of other states. A posilive oil shock will increase Wyoming's nominal GOP
(and raise the real value of this GOP when deflated by a national price index) but not necessarily raise its GNP or
personal income. For the U.S. states, this distinction is imporlant in a rew cases, notably for oil producers.
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11.2 Convergence Across the u.s. States The usefulness of using regional data can be seen as follows: imagine that, instead of
estimating the multivariate equation (11.6), we estimate the univariate regression

Notice that, in equation (I I.7), the term [(1- e-jlT)I TJ 'log(y;*) is no longer an explanatory
variable. If the term that multiplies initial income in equation (II.7) turns outto be negative,
we will conclude that poor economies tend to grow faster than rich economies so that
"absolute convergence" applies. It is for this reason that regressions like equation (11.7)

have been used in the literature to test the absolute convergence hypothesis. The question
is whether the failure to find a negative coefficient is reason to reject the neoclassical
growth model. Remember that the neoclassical model predicts a multivariate relation such as
eq uation (11.6). Su ppose that, instead ofequation (II .6), we estimate equation (11.7). If we
analyze data sets in which the various economies converge to different steady states, that is
y;' =I 5'j for all i and j, then the univariate regression equation (11.7) is misspecified and the
excluded term is incorporated into the errorterm: WiD] = UiO.T +[(1- e-fJT)1 TJ .Iog(y;*).

If the steady-state level of income, yt, is conelated with the explanatory variable YiO,

the error term is correlated with the right-hand-side variable, and the univariate regression
equation (11.7) wi lJ provide biased estimates of fJ. In particular, if currently richer economies
tend to converge to a higher steady-state level of income (that is, if yt and YiO are positively
correlated), the estimate of fJ in equation (/1.7) is biased toward zero. In other words,
researchers could find no relation between growth and the initial level of income, even
though conditional convergence holds. Under these circumstances, the only way to get
consistent estimates of fJ is to get measures of yt and include them in the regression.

Imagine now that we have a data set in which the various economies converge to different
steady states, but that there is no correlation between the initial and the steady-state level of
income, Although the univariate regression is still misspecified, the error term (which again
includes the missing variable, yt) is not correlated with the explanatory variable. Hence,
the usual estimation of equation (11.7) can provide a consistent estimate of fJ. Finally, if
we analyze a data set in which all economies have the same steady state, that is, if yt = Yj
for all i and j, the term [(I - e-fJT)1 T] ·log(Yn is incorporated into the constant term, and
the usual estimation of equation (11.7) will again provide a consistent estimate of {3.

In sum, there are two ways to estimate the speed of convergence, fJ. The first is to use
general data sets (that is, data sets for which there is no guarantee that the initial level of
income is uncorrelated with the steady-state level of income) and find proxies for the steady­
state level of income. The second is to use data sets in which the various economies tend to
converge to similar steady states or that, at least, the steady states are unrelated to the initial
level of income, This second context is the one in which regional data sets play an important
role. Although differences in technology, preferences, and institutions exist across regions,

II.2.t PConvergence

We now use the data on per capita income for the U.S. states to estimate the speed of
convergence. {3.5 (The definitions and sources of the data are in the appendix, section /1./2.)
Suppose, for the moment, that we have observations at only two points in time, 0 and T.

Then equation (2.35) implies that the average growth rate of per capita income for economy

i over the interval from 0 to T is given by

(lIT) ·log(YiTIYio) ~ x - [(I - e-fJT)/T] .log(Yio) + [(I - e-fJT)/TJ .Iog(v;l + UiOT

(1 \.6)

where UiO T represents the effect of the error terms, Uj" between dates 0 and T; 5''* is the
steady-st;te level of income; and x is the rate of technological progress, which we assume

is the same for all economies.
The coefficient on initial income in equation (I 1.6) is (I - e-fJT)1 T, an expression that

declines with the length of the interval, T, for a given {3. That is, if we estimate a linear
relation between the growth rate of income and the log of initial income, the coefficient is
predicted to be smaller the longer the time span over which the growth rate is averaged.
The reason is that the growth rate declines as income increases (if YiD < )in· Hence, if we
compute the growth rate over a longer time span, it combines more of the smaller future
growth rates with the initially larger growth rates. Hence, as the interval increases, the effect
of the initial position on the average growth rate declines. The coefficient (I - e~fJT IT)

approaches 0 as T approaches infinity, and it tends to fJ as T approaches O.
Notice that equation (11.6) includes the term [( 1 - e-1JT )IT] ·log(yt) as an explanatory

variable. That is, the growth rate of economy i depends on its initial level of income, YiO,

but it also depends on the steady-state level of income. This is why we use the concept
of conditional rather than absolute convergence: the growth rate of an economy depends

negatively on its initial level of income, after we "condition" on the steady state.

5. Barro and Sala-i-Manin (l992a) also use the data on gross state product (GSP), report~d hy.theBureau of
Economic Analysis. GSP is analogous to GDP in Ihat il assigns the p~oduct. 10 Ihe stale In whlc~ II has b~n
produced. In contrast, income (like aNP~ assigns Ihe p~oduct 10 the state In which the owners or the Inputs resIde,
This distinclion is potentially important If Ihe econo!Jlles are open and people lend 10 own capital In olh~r state,s,
or ir Ihere is a 10/ of interstate commuting (people live in one stale and work In another). B.arro and Sala-I·Manln
(1992a) show Ihat. in practice, Ihe distinctiun turns uut not to he that important; th~ esltmates of the s.peed of
convergence for asp are similar to Ihose for personal inco~e. Since asp data are avaIlable only startmg In 1963.
we limit attention in this chapter to the results that use the Income data.

(liT) ·IOg(YiT/Y;O) ~ u - [(I - e-fJT)IT] ,log(Ylo) + WiO,T (11.7)
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these L!ifferences are likely to be smaller than those across countries. Firms anL! householL!s

of different regions within a single country tenL! to have access to similar technologies and

have roughly similar tastes anL! cultures. Furthermore, the regions share a common ccntral

government and therefore have similar institutional setups anL! legal systems. This relative

homogeneity means that absolute convergence is more likely to apply across regions within

countries than across countries.

Table 11.1 shows nonlinear least-squares estimates in the form of equation (I 1.7) for 47

or 4R U.S. states or territories for various time periods. The rows of table 11.1 correspond to

the different time periods. For example, the first row appJies to the 120-year period between

1880 and 2000. The first column of the table refers to the equation with only one explanatory

variable, the logarithm of income per capita at the beginning of the period. Column two

adds four regional dummies, corresponding to the four main census regions: Northeast,

South, Midwest, and West. Finally, column three includes sectoral variables that are meant

to capture the aggregate shocks discussed in the previous section. We already argued that

the inclusion of these auxiliary variables would help to obtain accurate estimates of f3.
Each cell contains the estimate of f3, the standard error of this estimate (in parentheses),

the R2 , and the standard error of the regression (in brackets). All equations have been

estimated with constant terms, which are not reported in table 11.1.

The point estimate of f3 for the long sample, 1880-2000, is 0.0172 (s.e. = 0.0024 ).6

The high R2 , 0.92, can be appreciated from figure I1.2, which provides a scatter plot of

the average growth rate of income per capita between 1880 and 2000 against the log of

income per capita in 1880.

The second column of the first row presents the estimated speed of convergence when

the four regional dummies are incorporated. The estimated f3 coefficient is 0.01 60 (0.0034).

The similarity between this estimate and the previous one suggests that the speed at which

average incomes converge across the census regions is not substantially different from the

speed at which average incomes converge for the states within each of the regions. We can

check this resuJt by computing the average income for each of the four regions. The growth

rate of a region's average income between 1880 and 2000 is plotted against the log of the

region's average income in 1880 in figure 11.3. The negative relation is clear(the correlation

coefficient is -0.97). The estimated speed of convergence implied by this relation is 2.1

percent per year, about the same as the within-region rate shown in column 2.

The next ten rows of table 11.1 divide thesample into subperiods. The first two are twenty

years long (1880 to 1900 and 1920 to 1940), because income data for 1890 and 1910 are

unavailable. The remaining eight subperiods are ten years long.

6. This regression incluues 47 Slates or territories. Data for the Okl"hom" terri lOry arc unavail"hlc for 1880.

Tahl,' 11.1
Regression...; for PL'l'soll<.d Income Across U.S. Stales

(I) (2) (l)
E'luations with

E'luations with Structur,,1 Variahles
Basic ElJlwtion Rq:.ional Dummies and Regional Dummies

Periou ~ R21a J ti R'lal S R21a]

I 880-20(Xl 0.0172 0.92 1111160 0.95
(0.0024) [0.011121 (11.11034) IO.(K)I 0 I

IRRO-1900 0.0101 0.36 0.0224 0.62 0.0268 065
(000221 jO.0068J (0.0043) 10.00541 (().0051 ) 10.(K)531

1900-20 OOC IR 0.62 0.0209 0.67 o.ono 0.71
(0 iKlJ I ) [0.00651 (0.0065) 10.00621 (0.0077) [0.0060]

1920--30 -(U1I49 0.14 -0.0128 0.43 0.0209 0.64
(0.IX)51) [0.01321 ((l.0078) [(Ull , II (0.0119) 10.0089]

1930--40 0.0129 0.28 1I.00n (U4 0.0147 0.37
(0.0033) Ill.0079] (0.0052) 10.1Kl781 (0.0083) 10.0078]

1940-50 0.0)02 0.73 0.0) 12 0.88 0.0304 091
(00058) 10.0087J 111.00(2) I(UX)59J (W065) 10.(K)52]

1950-·60 0.0193 0.40 IJ.OI91 0.52 0.0305 0.74
(0.0039) 10.(Kl51] (ll.O056) IIUX)47j (0.0053) 10.Om5J

1960-70 0.0286 0.61 0.<1I81 0.73 0.0196 0.74
(0.IKlJ9) 10.1)()40J (0.0046) 10.00341 (0.0061 ) [0.OO35J

1970-RO 0.01R6 0.27 0.0079 0.44 0.0057 0.46
((l.O049) [0.0(44) 10.(055) IIUl0401 (0.0068) 10.(Kl40j

1980-90 O.(KU6 0.01 0.0095 0.57 0.0029 0.69
(0.0085) 10.0077] (0.0074) [0.0052J (0.0070) [0.0045]

1990-2000 0.0016 0.01 -0.0005 0.07 0.0029 0.14
(0.0035) 10.0035] (0.01l45) [0.0035] (0.0050) 10.0034J

Joint, 9 0.0150 0.0164 0.0212
subperiods (01)()15) (0.0021 ) (0.0023)

Nme: The regressions use nonlinear least squares to estimate equations of the form

(liT) ·log(Yi,IYi.r--T) = 1I -- [log(Yi./-T)]· [(I - e--~T)/TI + other variables

where Yi./·-T is per capita income in state i al the heginning of the period divided hy the overall CPI, T is the
lenglh of the interval, and the other variables are regional uummies anu structural measures (see the description
in thc tcxt). Sec the appendix (section 11.12) for a uiscussion of the data on the U.S. states. The samples that
hegin in 1880 have 47 ohservations. The others have 48 ohservations. Each column contains the estimate of P. the
stanuaru error of this estimale (in parentheses), the R2 of the regression, and the standard error of the equation (in
hmckets). The estimaleu coefficients for constants, regional uummies, and structural variables are not reponed.
The likelihoou-ratio statistic refers to a test of the equality of the coefficients of the log of initial income over the
nine suhperious. The" value comes from a X2 distribution with eight degrees of freedom.



470 Chapter II Empirical Analysis of Regional Data Sets 471

1.1 1.2 1.3

• East

i I I 1 I 1

0.4 0.5 0.6 0.7 0.8 0.9
Log of 1880 per capita income

0.025 0.022

• •• 0.021
•• § 0.02

• N

0.02 •
I 0.0190

0
00

•
00

0 0.018
0 .,j

'i' e
~ 0.017
00

-5
~

.,j e 0.016
~ 0.015

~Cj

"..c:: 6. 0.015
~ "e u

""
~

0.014'"
~

"-
:l

" 0.013c:
-<

0.01 0.012
0 0.1 0.2 0.3

Figure 11.3
Convergence of personal income across U.S. regions: 1880 income and 1880-2~0 income growth: T~e
negative relation between income growth and initml income. shown for the U.S. states In figure 11.2. applIes In

(igure I 1.3 to averages over the four main cenSUS regions.21.81.6
0.005 +---,..--.------rl---,----,----,----r-----r-----,--.----,--~

--OA - 0.2 0 0.2 0.4 0.6 0.8 I 1.2 1.4
Log of ISI\O per e'tpita personal income

where (Uij,l- T is the weight of sector j in state i's personal income attime t - T and Yjl is

the national average of personal income per worker in sector j at time t. The nine sectors

used are agriculture, mining, construction, manufacturing, trade, finance and real estate,

transportation, services, and government. We think of Sit as a proxy for the effects reflected

in the term !Pi S, in equation (11.4).

are both estimated with substantial error. Hence, even within regions, poor states tended to

grow slower than rich states during the I920s. The joint estimate for the nine subperiods is

now 0.0164 (0.0021 ), similar to that for the basic regression.
Aggregate shocks that affect groups of states differentially, such as shifts in the relative

prices of agricultural products or oil, might explain the instability of the estimated coeffi­

cients. Following Barro and Sala-i-Martin (1991, 1992a, 1992b), the third column of table

11.1 adds an additional variable to the regression as an attempt to hold these aggregate

shocks constant. The variable. denoted by Sj/ (for structure), is calculated as

Figure 11.2
Com'er!:ence of personal income across U.S. states: 1880 personal income and 1880-2000 income growth.
The average growth rale or stale per capita income for 1880-2000. shown on lhe veI1ieal axis. is negatively related
(I) Ihe lug of per capita income in '880, shown on the horizontal axis_ Thus. absolute fJ convergence exists for the
U.S. slales.

The estimated fJ coefficienl is significantly positive-indicating fJ convergence-for

seven of the ten subperiods. The coefficient has the wrong sign (fJ < 0) for only one of the

subperiods, I 92G-30. a time of large declines in the relative price of agricultural commodi­

ties. A likely explanation for this result is that agricultural states tended to be poor states, and

the agricultural states suffered the most from the fall in agricultural prices. The estimated

coefficient is insignificant for the two most recent subperiods, the I980s and the I990s. If

we constrain the fJ coefficients to be the same for all subperiods, the joint estimate for the

basic equation is 0.0150 (0.0015).

Column 2 of Table 11.1 adds regional dummies, where the coefficients of these dummies

are allowed to differ for each period. These regional variables capture effects that are

common to all states within a region in a given period. The estimated fJ coefficient for

the 1920s still has the wrong sign, as does the the coefficient for the I990s, although they

9

Si' = 2.:.: Wij.r-T . Ilog(Yj,/Yj.r-T)/ T]
j=1

(11.8)
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The structural variable reveals how much a state would grow if each of its sectOrS grew at
the national average rate. For example, suppose that economy i specializes in the production
of cars and that the aggregate car sectOr does not grow over the period between t - T and
t. The low value of Sit for this region indicates that it should not grow very fast because the
car industry has suffered from the shock.

Note from equation (11.8) that Sit depends on the contemporaneous growth rates of
national averages and on lagged values of state i's sectoral shares. For this reason, the
variable can be reasonably treated as exogenous to the CUrrent growth experience of state i.

Because of lack of data, we can include the structural variable only for the periods after
1929. For the periods before 1929, we obtain a rough measure of Sit by using the share of
agriculture in the state's total income.

Column three includes structural variables, as well as regional dummies, in the growth
regressions. (The coefficients on the regional and structural variables are allowed to differ
for each period.) One contrast with the previous results is that the estimated f3 coefficient
for the 1920s becomes positive and close to 0.02. The coefficients for the 1980s and 1990s
are also positive but their size continues to be small. The joint estimate of f3 for the nine
subperiods is 0.0212 (0.0023).

The main conclusion is that the U.S. states tend to converge at a speed of about 2 percent
per year. Averages fOr the four census regions converge at a rate that is similar to that for
states within regions. If we hold constant meaSUres of structural shocks, we cannot reject
the hypothesis that the speed of convergence is stable over time, although the estimates for
the last two decades are insignificantly different from zero.

11.2.2 Measurement Error

The existence of temporary meaSUrement errOr in income tends to introduce an upward bias
in the estimate of f3; that is, the elimination of meaSUrement error over time can generate the
appearance of convergence.? One reason for meaSUrement errOr is that each state's nominal
income is deflated by a national price index, because accurate indexes do not exist at the
state level.

One way to handle measurement error is to use earlier lags of the log of income as
instruments in the regressions. If measurement errOr is temporary (and the errOr term is not
serially correlated), the earlier lags of the log of income would be satisfactory instruments
for the log of income at the start of each period. If we reestimate column I of table 11.1
with the previous lag of the log of income used as an instrument, we get a joint estimate

7. The same propeny holds for shon-term business fluctuations. We may want to design a model in w~ich these
temporary fluctuations of output are distinguished from the kinds of transitional dynamiCs that appear," growth
models.

of f3 of 0.0176 (0.0019). This panel uses nine subperiods starting in 1900 because the
observation for 1880-1900 is lost. The OLS estimate of f3 for the same nine subperiods is
0.0165 (0'(lOI8). Hence, the use of instruments generates a minor change in the estimate
of f3, which suggests that measurement error does not explain the significantly negative
relation between growth and the initial level of income.

When we estimate the subperiods separately, we again find only a small difference be­
tween the instrumental-variable (IV) and OLS estimates. The largest change applies to
1950-60, for which the IV estimate is 0.0139 (0.0040), compared with the OLS value of

0.0193 (0.0039).
The resu Its for columns 2 and 3 of table 11.1 are similar. Our conclusion is that meaSUre­

ment error is unlikely to be a key element in the results.

11.2.3 u Convergence

Figure 11.4 shows the cross-sectional standard deviation for the log of per capita personal
income net of transfers for 47 Or 48 U.S. states or territories from 1880 to 2000. The
dispersion declined from 0.54 in 1880 to 0.33 in 1920 but then rOse to 0.40 in 1930. This
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Figure 11.4 . .
Dispersion of personal income across U.S. states, 1880-2000. The figure sho~s ~he cross-secUonal standa~d

deviation of the log of per capita personal income for 47 or 48 U.S. states or terntones fr~m 1880 to 2000. Th,s
measure ofdispersion declined from 1880 to 1920, rose in the 1920s, fell from 1930 to the m'd-1970s, rose through
1988, declined again through 1992, and then remained fairly flat.
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rise reflects the adverse shock to agriculture during the I920s; the agricultural states were
relatively poor in 1920 and suffered a further reduction in income with the fall in agricultural
prices.

After reaching a peak in 1932, the dispersion fell to 0.36 in 1940, 0.24 in 1950, 0.20 in
1960, and 0.16 in 1970. The long-run decline stopped in the mid-1970s, with a low point
ofO.14 in 1976. After that, a, rose to a peak of 0.16 in 1988. Dispersion fell to 0.14 in the
early 1990s. then remained relatively flat.

11.3 Convergence Across Japanese Prefectures

11,3.1 PConvergence

Barro and Sala-i-Martin (I992b) analyze the pattern of f3 convergence for per capita in­
come across 47 Japanese prefectures (see the appendix, section 11.12, for the sources and
definitions). Tahle 11.2 reports nonlinear estimates of the convergence coefficient, f3, for
the period 1930-90. The setup of table 11.2 parallels that of table 11.1.

The first row of table 11.2 pertains to regressions for the whole period, 1930-90. The basic
equation in column I includes only the log of initial income as a regressor.
The estimated f3 coefficient is 0.0279 (0.0033), with an R 2 of 0.92. The good fit can be ap­
preciated in figure 11.5. The strong negative correlation between the growth rate from J930
to 1990 and the log of per capita income in 1930 confirms the existence of f3 convergence
across the Japanese prefectures.

The estimated f3 coefficient is essentially the same in column 2, which incorporates
dummies for the seven Japanese districts as explanatory variables. This finding suggests
that the speed ofconvergence for prefectures within districts is similar to that across districts.
This idea can be checked by running a regression that uses the seven data points for the
growth and level of the average per capita income of districts. The negative relation between
the growth rate from 1930 to 1990 and the log of per capita income in 1930 is displayed in
figure 11.6. The f3 coefficient estimated from these observations (not reported in the table) is
0.0261 (0.0079). Hence, we confirm that the speed of convergence across districts is about
the same as that within districts.

The second and third rows of table 11.2 break the full sample into two long subperi­
ods, 1930-55 and 1955-90. For the basic equation, the speed of convergence for the first
subperiod is larger than that for the second, 0.0358 (0.0035) versus 0.0191 (0.0035). The
same relation holds for the second column, which adds the district dummies as explanatory
variables. (Different coefficients on the dummies are estimated for the two subperiods.)
Hence, we conclude that the speed of convergence after 1955 was substantially slower than
that between 1930 and 1955. The lack of sectoral data for the early period does not, how-
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Figure 11.5
Convergence of personal income across Japanese prefectures: 1930 income and 193()-90 income growth.
The growth rate of prefectural per capita income for 1930-90, shown on the vertical axis, is negatively related to
the log of per capita income in 1930. shown on the horizontal axis. Thus absolute fJ convergence exists for the
Japanese prefectures. The numbers shown identify each prefecture; see table 11.10.

is 0.0125 (0.0032). A test for the equality of coefficients over time is strongly rejected; the

p value is 0.000.

The results with district dummies in column 2 allow for different coefficients on the
dummies in each subperiod. In this case, only the estimated fJ coefficient for 1955-60 has

the wrong sign, and it is not significant. The joint estimate is 0.0232 (0.0034). However, we

still reject the equality of coefficients; the p value is again 0.000.

Column 3 adds a measure of the structural variable, Sil' defined in equation (11.8). This
variable is analogous to the one constructed for the U.S. states. The coefficients on the

structural variable are allowed to differ for each subperiod. In contrast with the previous
two columns, none of the subperiods has the wrong sign when the sectoral variable is

included. The joint estimate for the seven subperiods is 0.0312 (0.0040). We still reject the
hypothesis of coefficient stability over time: the p value is now 0.002.

Figure t 1.6 . . d 19J()-90 . rowth The
Convergence of personat income acr05S Japanese distncts: 1930 IRcome an ~ncome g '.
negative relation between income growth and initial income. shown for Japanese prefectures In figure 11.5, applies
also in figure 11.6 to averages for the seven major districts.

One source of instability in the estimated f3 coefficients is that Tokyo is an outlier in the

1980s: Tokyo was by far the richest prefecture in its district in 1980 and had the largest
growth rate from 1980 to 1990, an outcome not captured by the structural variable that we

have included. Ifwe add a dummy for Tokyo for the 1980s, we get estimated fJ coefficients of

0.0218 (0.0112) for 1980-85 and 0.0203 (0.0096) for 1985-90. With this dummy induded,

the test of equality of coefficients now rejects with a p value of 0.0 IO. .
Another source of instability is the period] 970-75, for which the estimated fJ coe~fici~nt

of 0.0661 (0.0 I 18) is substantially higher than the others. A likely explanation for thtS high

estimated value of fJ is that the oil shock of 1973 had an especially adverse i~pact on

the richer industrial areas. The structural variable is supposed to hold constant thiS type ~f
shock, but the construct that we have been able to measure does not seem to capture thiS

effect.
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As with the U.S. states, we reestimated the equations for Japanese prefectures with earlier
lags of income used as instruments. The conclusion again is that the estimates are not
materially affected. For example, in column 3 of table 11.2, the joint estimate of f3 falls
from 0.0312 (0.0040) to 0.0282 (0.0042) when the instruments are used.

11.3.2 (f Convergence Across Prefectures

We want now to assess the extent to which there has been a convergence across prefectures
in Japan. We calculate the unweighted cross-sectional standard deviation for the log of per
capita income, at, for the 47 prefectures from 1930 to 1990. Figure 11.7 shows that the
dispersion of personal income increased from 0.47 in 1930 to 0.63 in 1940. One explanation
of this phenomenon is the explosion of military spending during the period. The average
growth rates for districts I (Hokkaido-Tohoku) and 7 (Kyushu), which are mainly agricul­
tural, were -2.4 percent and -1.7 percent per year, respectively. In contrast, the industrial
regions of Tokyo, Osaka, and Aichi grew at 3.7, 3.1, and 1.7 percent per year, respectively.

The cross-prefectural dispersion decreased dramatically after World War II: it fell to 0.29
in 1950, 0.25 in 1960, 0.23 in 1970, and hit a minimum of 0.12 in 1978. The dispersion
then increased slightly: at rose to 0.13 in 1980,0.14 in 1985, and 0.15 in 1987, but has been
relatively stable since 1987. Thus the pattern is similar to that for the U.S. states.

11.4 Convergence Across European Regions

11.4.1 PConvergence

Barro and Sala-i-Martin (1991) analyzed convergence for 90 regions in eight European
countries: II in Germany, II in the United Kingdom, 20 in Italy, 21 in France, 4 in the
Netherlands, 3 in Belgium, 3 in Denmark, and 17 in Spain. The data, described in the
appendix (section I J.12), correspond to GDP per capita for the first seven countries and to
income pcr capita for Spain.

Table I I.~ shows the estimates of f3 in the form ofequation (11.6) for the period 1950-90.
. The regrcssions include country dummies for each period to proxy for differences in the

steady-state values of Xi and yj in equation (11.6) and for countrywide fixed effects in the
error terll1S. The country dummies, which are not reported in table 11.3, have substantial
explanatory power. The first four rows of column 1 show the results for four decades. The
estimates of f3 are reasonably stable over time; they range from 0.0 10 (0.004) for the 1980s
to 0.023 (0.009) for the 1960s. The joint estimate for the four decades is 0.019 (0.002). The

Table 11.3
Convergen<:c Across European Regions

Note: See me appendix (section 11.12) for a discussion of.the ~ata on European r:gions, and see the note.to
table 11.1 t-K the form of the regressions. The variable Yi.I-T IS an mdex ~f the per C~Plt~ GDP (I~come.fo~ Spain)
'n . n /' ;oJ. the beginning of the interval. All samples have 90 observatIOns. The likelihood-ratIO stallstlC refers
1 reglO . . . .. . P' h & b'odto a test of me equality of the coeffiCients of the log of Inttlal per capita GD or Income over t e ,our su pen s.
The p vahl'" comes from a X2 distribution with three degrees of freedom.
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Figure 11.7 . '
Dispersion of personal income across Japanese prefectures, 1930-90. The hgurc shows the cross-seetlOn~1

standard deviation of the log of per capita personal income for 47 Japanese prefectures from 1930 to 1990. ThIs
measure of dispersion fell from the end of World War II until 1980.
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Grow~h rate fr~m 1950 to 1990 versus 1950 per capita G DP for 90 regions in Europe. The growth rate of a
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Umted KlIlgdom, Italy, France, the Netherlands, Belgium, Denmark, and Spain. The numbers show 'd ('fY' h
regIOns; see table 11.9. . n I en I y t e

hypothesis ofconstant f3 over time cannot be rejected at conventional levels of significance;
the p value is 0.18.

. Figure Il.8 shows for the 90 regions the relation of the growth rate of per capita GOP

(mcomefor Spain) from 1950 to 1990 (l955 to 1987 for Spain) to the log of per capita

GOP or mcome at the start of the period. The variables are measured relative to the means

of the respective countries. The figure shows the negative relation that is familiar from

the U.S: ~t~tes and Japanese prefectures. The correlation between the growth rate and the

log of InJtta) per capita GOP or income in figure 11.8 is -0.72. Since the underlying

numbers are expressed relative to own-country means, the relation in figure 11.8 pertains

to f3 convergence within countries, rather than between countries. The graph therefore
corresponds to the estimates that include country dummies in column I of table 11.3,

Column 2 adds the share of agriculture and industry in total employment or GOP at

the start of each subperiod.H These share variables are as close as we can come with

our present data ror the European regions to I1Ic<Jsuring the structural variable,S", that

appear.~ in equation (11.8). The results allow fIll' period-specific coefficients for the sectoral

shares.

The joint estimate of fJ for the four subpcriods is now 0.018 (0.003). The test of the

hypothesis of stability of fJ across periods yields a p value of 0.034. Thus. in contrast to

our findings for thc United States and Japan, the inclu.~ion or the share variables makes

the Ii coefficients appear Jess stable over time. Probably, a better measure of structural

composition would yield more satisfactory results.

We have also estimatcd the joint system for Europe with individual f3 coefficients for

the five large countries (Germany, the United Kingdom. Italy, France, and Spain). This

system corresponds to the rour-period regression shown in column 2 of table 11.3, except

that the coefficient Ii is allowed to vary over the countries (but not over the subperiods).

This system contains country dummies (with different coefficients for each subperiod) and

share variables (with coefficients that vary over the subperiods but not across the coun­

tries). The resulting estimates of fJ are as follows: Germ<Jny (I I regions), 0.0224 (0.0067);

United Kingdom (II regions), 0.0277 (0.0104); Italy (20 regions), 0.0155 (0.0037); France

(21 regions), 0.0121 (0.0061); and Spain (17 regions), 0.0182 (0.0048). Note that the indi­

vidual point estimates are all close to 2 percent per year; they range from 1.2 percent per

year for France to 2.8 percent per year for the United Kingdom.

A test for equality of the f3 coefficients across the five countries yields a p value of 0.55.

Hence, we cannot reject the hypothesis that the speed of regional convergence within the

five European countries is the same.

We also reestimated the European equations with earlier lags of per capita GOP or

income used as instruments. This procedure necessitated the elimination of the first sub­

period; hence, we include only the three decades from 1960 to 1990. The use of instru­

ments had little impact on the results that included only country dummies, correspond­

ing to column I of table 11.3. The joint estimate of f3 goes from 0.0187 (0.0022) in

the OLS case (with only three subperiods included) to 0.0/65 (0.0023). If the agricul­

tural and industrial sh<Jre variables are added, however, the joint estimate of f3 goes from

0.0153 (0.0034) to 0.0073 (0.0038). We think that the sharp drop in the estimated fJ co­

efticient in this c<Jse reflects inadequacies in the share variables as measures of structural

shifts.

8. The share figures for the first three subperiods are based on employment. The values for 1980-90 are based on
GDP.
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Figure 11.9
Dispersion of per capita GDP within five European countries. The figure shows the cross-sectional standard
deviation of the log of per capita GDP from 1950 to 1990 for II regions in Germany, II in the United Kingdom.
20 in Italy, 21 in France, and 17 in Spain. This measure of dispersion fell in most cases since 1950 but has been
roughly stable in Germany and the United Kingdom since 1970.

11.4.2 u Convergence

Figure 11.9 shows the behavior ofa, for the regions within the five large countries: Germany,
the United Kingdom, Italy, France. and Spain. The countries are always ranked in descending
order of dispersion as Italy, Spain, Germany, France, and the United Kingdom. The overall
pattern shows declines in ar over time for each country, although little net change occurs
since 1970 for Germany and the United Kingdom. The rise in ar from 1974 to 1980 for the
United Kingdom-the only oil producer in the European sample-likely reflects the effect
of oil shocks. In 1990 the values of ar are 0.27 for Italy, 0.22 for Spain (for 1987), 0.19 for
Germany, 0,14 for France, and 0.12 for the United Kingdom.

11.5 Convergence Across Other Regions Around the World

Many researchers have recently studied the patterns ofconvergence across regions in various
countries around the world. Coulombe and Lee (1993) find that the speed of convergence
across regions in Canada is not too different from the 2 percent per year we found for the
U.S. states, Japanese prefectures, and European regions. Persson (1997) finds similar results

for 24 Swedish counties for the period 1911-93. Cashin and Sahay (1995) find strong evi­
dence of absolute convergence across Indian states between 1961 and 1991. Other regional
studies in the recent literature include O'Leary (2000) for Ireland; Petrakos and Saratsis
(2000) for Greece; Hossain (2000) for Bangladesh; Utrera and Koroch (1998) for Argentina;
Magalhaes, Hewings, and Azzoni (2000) for Brazil; Cashin (1995) for Australasia; Yao and
Weeks (2000) for China; Cashin and Loayza (1995) for South Pacific countries; Gezici and

Hewings (200 I ) for Turkey; and Sanchez-Robles and Villaverde (200 I) for Spain.

11.6 Migration Across the U.S. States

This section considers the empirical determinants of net migration among the U.S. states.
The analysis in section 9.1.3 suggests that mjr, the annual rate of net migration into region

i between years t - T and t, can be described by a function of the form

mjr = !(Yi.r-T, Oi, Jrj.,-T; variables that depend on t but not i) (11.9)

where Yi r-T is per capita income at the beginning of the period, OJ is a vector of fixed
amenitie~ (such as climate and geography), and Jrj.r- T is the population density in region i

at the beginning of the period.9 The set of variables that depends on t but not on i inclu~es

any elements that influence per capita incomes and population densities in other economies.
Also included are effects like technological progress in heating and air conditioning-these

changes alter people's attitudes about weather and population density.
Per capita income-a proxy for wage rates-would have a positive effect on migration,

whereas population density would have a negative effect. The functional form that we

implement empirical.ly is

mjr = a + b . 10g(Yi.r-T) + Ct Oi + C2Jrj,l_T + C3 . (Jrj.r-T)2 + Vir (11.10)

where Vir is an error term, b> 0, and the form allows for a quadratic in population density,

Jrj r-T. The marginal effect of Jri,r-T on mit is negative if C2 + 2C3 < O.
'Although there is an extensive literature about variables to include as amenities, OJ, the

present analysis includes only the log of average heating-degree days, denoted log(heat; ),
which is a disamenity so that CI < O. The variable log(heatj) has a good deal of explanatory

power for net migration across the U.S. states. We considered alternati:-e m~asures of .the
weather, but they did not fit as well. It would be useful to include migration for. retIre­
ment, a mechanism that likely explains outliers such as Florida. However, these kinds of

9. Some amenities, such as government policies with respect to tax rates and regulations, would vary over time.
We do not deal with these types of variables in the present analysis.
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Regressions for Net Mignllion inlo U.S. Solates, 1900-R9

Log of Heating Square of
Pcr Capira Degree Populmion Populalion

Period Income Days Density Density R 2 [aJ

19(X)-20 0.0335 -O.(Xl66 -0.0433 0.0307 0.70
(0.0075) (0.0037) (0.0079) (0.0095) 10.0111J

1920-30 0.0363 -0.0124 -0.0433 0.0307 0.61
to.(){178) (O.(lO27) (0.0079) (0.0095) 10.0079J

1930--40 0.0191 -0.0048 -0.0433 0.0307 0.71
(0.0037) «l.(X) 14) (0.0079) (O.tlO95) [0.t1041]

1940-50 0.0261 -0.0135 -0.0433 0.0307 0.82
(0.0055) (O.(lO22) (0.0079) (0.0095) 10.0065]

1950-60 0.0438 -0.tl205 -0.0433 0.0307 (J.70
(0.0086) (O.(lO31) (00079) (0.0095) [0.009IJ

1960-70 0.()435 -0.0056 -0.0433 0.0307 0.70
(0.0083) (0.(X125) (0.0079) (0.(X195) 10.0069J

1970-80 0.0240 -O.(lO77 -0.0433 00307 0.73
(0.0091) (O.llO24) (0.0079) (00095) [0.0072]

1980-89 0.0163 -0.tX166 -0.0433 0.0307 0.72
(0.0061) (0.(KJl9l (0.0079) (0.0095) [0.0053]

Joint, 8 subperiods 0.0260 individual -0.0427 0.Q300
(0.0023) cocnlcients (0.0079) (0.0097)

MFi~urel~ 1~laOnd initial slale income 1900-90. The average net migrat',on ralc for 48 U.S: slates or terrhitories frohm
Igra 10 ' .' .' . I d h' I f 'nilial per capita Income, s own on l e

1900 to 1990. shown on the venical axIS, IS poSlllvely re ale to I e og 0 I .. ' . . th n the values
horizontal axis. Florida, Arizona. California, and Nevada have nOlably hIgher net migratIon rates a .

predicted by their initial levels of income.

modifications probably would not change the basic findings that we now present about the

relation between net migration and state per capita income. .
The data on net migration for the U.S. states start in 1900 and are available for every

t 1910 and 1930-see Barro and Sala-i-Martin (1991). We calculate thecensus year excep .
10-year annual migration rates into a state by dividing the number of net migrants between

dates t - T and t by the state's population at date t - T. ..
'F' I I 10 shows the simple long-term relation belween the mIgratIOn rate and the logIgure . ., .

of initial income per capita. 10 The.horizontal axis plots the log of state ~er ca~lta .mcom~ m
1900. The positive association is evident (correlation = 0.51). The m.am outh~r IS ~Ionda,
which has a lower than average initial income per capita and a very high net migration rate

of 3 percent per year.

10 The variable on Ihe venical axis is lhe average annual in-migration r~te for each stale from 1900 to 1987. The

variable is the average for each subperiod weighted by Ihe length of the Inlerval.

Note: The likelihood-ratio statislie for" tesl of the equality of the income coefficients over the eight subperiods is
17.1. wilh a "value of 0.017 (from a X2 distribution with seven degrees of freedom). The regressions use iterative,
weighted least squares and take the form

mil = lit + b, . IOg(Yi.I_T) + CIt . Heati +C2 . Jri./-T + C3 • Jrll_T +C4, . Regionj + CSt' Sjt

where mil is the net flow of migrams imo slale i between years / - T and I. expressed as a ratio to the population at
I - T; Heal, is heating degree days; lfL/-" is population density (thousands of persons per square mile); Region;
is a sci of dummies for the four main census regions; and Sjr is the structural variable described in the text. The
estimales of a,. C4', and cs, are nol shown. The data are discussed in the appendix (section 11.12). All samples
have 48 observations. Standard errors are in parentheses.

Table J1.4 shows regression results in the form of equation (ll. J0) for net migration
into U.S. states. The results reported are for eight subperiods starting with 1900-20. The
regressions include period-specific coefficients for log(Yi,I-T) and for the log of heating­
degree days. (The hypothesis ofstability over the subperiods in the coefficients of log[heat; ]
is rejected at the 5 percent level. although the estimated coefficients on log[Yi,I_T] change
little if only a single coefficient is estimated for the heat variable.) Since the hypothesis
that the coefficients for the population-density variables are stable over time is accepted at
the 5 percent level, we estimate equation (11.10) with one coefficient for the density and
one for the square of the density. The regressions also include period-specific coefficients
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for regional dummies and structural-share variables. (The estimated coefficients for the
regional and structural variables are sometimes significant but playa minor role overall.)

The estimated coefficients for log(heat; ) in table 11.4 are all negative and most are
significantly different from 0; other things equal, people prefer warmer states. The jointly
estimated coefficients for density are -0.043 (0.008) on the linear term and 0.030 (0.0 I0)
on the squared term. These point estimates imply that the marginal effect of population
density on migration is negative for all states, except for the three with the highest densities:
New Jersey, Rhode Island since 1960, and Massachusetts since 1970.

The coefficient on the log of initial per capita income is significantly positive for all
subperiods. The joint estimate is 0.0260 (0.0023). The estimated response of migration to
the log of initial level is, however, not stable over time: the p value for the rejection of this
hypothesis is 0.017. The main sources of instability are the unusually large coefficients on
income in the I 950s and 1960s; the coefficients in these two subperiods are 0.0438 (0.0086)
and 0.0435 (0.0083), respectively.

Although highly significant, the jointly estimated coefficient on initial income, 0.026, is
small in an economic sense. The coefficient means that, other things equal, a 10 percent
differential in income per capita raises net in-migration only by enough to raise the area's rate
of population growth by 0.26 percent per year. Our previous results suggest that differences
in per capita income tend themselves to vanish at a slow speed, roughly 2 percent per
year. The combination of the results for migration with those for income convergence
suggests that net migration rates would be highly persistent over time. The data confirm this
idea: the correlation between the average migration rate for 19()()...40 with that for 194~89
is 0.70.

11.7 Migration Across Japanese Prefectures

Before we analyze migration across Japanese prefectures and implement equation (11.10)
for Japan, we should mention that there is a substantial difference between the typical
Japanese prefecture and the typical U.S. state in terms of area. The average size of a
Japanese prefecture is 6394 square kilometers, 11 roughly half the size of Connecticut. The
largest prefecture, Hokkaido, is 83,520 km2, or roughly the size of South Carolina. The
second largest prefecture, Iwate, has an area of 15,277 krn2, a bit larger than Connecticut
and a bit smaller than New Jersey. In comparison, the average U.S. state has an area of
163,031 km2, and the area of the largest state in the continental United States, Texas, is

11. This figure excludes Hokkaido, which is about five limes as large as. any of the other prefectures. The average
size including Hokkaido is 8036 km2, two-thirds the size of Connecticut.

69 [,030 km2. California, with an area of 411,049 km2, is slightly larger than all of Japan

(377,682 km2 ).

The contrast in size means that Japanese prefectures resemble metropolitan areas more
than states, so that daytime commuting across prefectures can be significant. Urban
economists, such as Henderson (1988), think that people like to live in cities for two reasons.
First, there are demand or consumption externalities. That is, cities provide amenities, such
as theaters and museums, features that can be supplied only if there is a sufficient scale of
demand. Second, there are production externalities, which tend to generate high wages in
big cities. An offsetting force is that people want to live away from crowded cities because
they tend to be associated with crime, less friendly neighborhoods, and (in equilibrium)
high land and housing prices (see Roback., 1982). Thus the decision to migrate to a city
involves a trade-off. This trade-off can be avoided if people live in a suburb and commute to
the central city. People are especially willing to pay high commuting costs when densities

in the central city are extremely high.
To deal with these issues empirically, we would like to have a measure of the density of the

neighboring prefectures. Conceptually, we could construct such a measure by weighting the
neighbors' densities by their distance in some way. In practice, however, we observe that
there are two main areas in Japan that have an abnonnally high population density, Tokyo and
Osaka. In 1990, Tokyo's density was 5470 peoplelkm2 and Osaka's was 4674 people/km2

,

compared to an average for the other prefectures of624 peoplelkm2
.12 Hence, the problems

that we have mentioned are likely to arise in these two regions only. We can confinn this
idea by considering the ratio of daytime to nighttime population, a measure of the extent
of commuting. 13 A ratio smaller than one indicates that there are people who live in that
prefecture but work in another, and a ratio larger than one indicates the opposite. The ratio
is close to one for all prefectures except for the ones around Tokyo and Osaka: Tokyo's
ratio is 1.184 and Osaka's is 1.053. The ratios for the Tokyo region are 0.872 for Saitama,
0.876 for Chiba, and 0.910 for Kanagawa. For the Osaka region, the ratios are 0.955 for

Hyogo, 0.871 for Nara, and 0.986 for Wakayama.14

We constructed a variable called neighbor's density by assigning the prefectures of
the Tokyo area (Tokyo and its immediate neighbors, Saitama, Chiba, and Kanagawa) and
the Osaka area (Osaka and its immediate neighbors, Hyogo, Nara, and Wakayama) the
average density of their immediat~neighbors. For other prefectures, the variable equals its

12.ln comparison, the u.s. stale with the largest density in 1990 was New Jersey with 390 peop1e1km2
•

13. The source of these data is the Statistics Bureau, Management and Coordination Agency.

14. There seems to'be some commuting across prefectures in the areas surrounding Kyoto and Aichi, but the
magnitudes are much smaller: Aichi's ratio is 1.016 (and its n~ighboring prefecture, Gifu, has a ratio of 0.977)
and Kyoto'. i. 1.011.
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Migration and initial prefectural income, 1955-90. The average net migration rate for 47 Japanese prefectures
from 195510 1990, shown on the venical axis, is positively related to Ihe log of 1955 per capita income, shown on
the horizontal axis. The three prefeclUres surrounding Tokyo-Chiba. Sailama. and Kanagawa-had substantially
higher net migration rales than the values predicted by their initial levels of income.

Thus weather does not seem to play an important role in the process of internal migration

in Japan.
To summarize, some main findings are that the rate of net in-migration to a prefecture is

negatively related to own density and positively related to the density of neighbors. Holding

other things constant, migration is positively associated with initial per capita income. A

notable result is the similarity of the coefficients on income for the United States and Japan,

0.026 from the joint estimation for the U.S. states and 0.019 from the joint estimation for

Japanese prefectures.
Recall that differences in per capita income tend to dissipate at a slow rate, something

like 2.5 to 3 percent per year for the Japanese prefectures. Putting this result together with

those for migration, the implication is that net migration rates would be highly persistent

over time. The data confirm this idea: the correlation between the average migration rate

for 1955-70 with that for 1970-90 is 0.60.

(11.11)

own population density. We expect to lind a positive relation between migration and this

neighbor variable and a negative relation between migration and own density. This relation

would indicate that people do not like to live in dense areas (they have to pay the congestion

costs) but like to be close to these areas (so that they get the benefits of a big city).

The functional fonn that we estimate is

where Vir is an errortenn, and Jrt~_T is the population density of the surrounding prefectures.

To calculate the amenity (weather) variable, we squared the ditference between the maxi­

mum and average temperatures, added the square of the difference between the minimum

and average temperatures, and then took the square root. Hence, this variable measures ex­

treme temperature. A variable similar to the one used for the United States (heating degree

days) was unavailable. We experimented with other weather variables, such as maximum

and minimum temperatures and average snowfall over the year. These alternative variables

did not fit as well.

Figure 11.1 I shows the relation between the average annual migration rate for 1955-87

and the log of income per capita in 1955. The clear positive association (simple correlation

of 0.58) suggests that net migration reacts positively to income differentials. An interesting

point is that the three outliers at the top of the figure are Chiba, Saitama, and Kanagawa,

the prefectures surrounding Tokyo.

Table 11.5 shows the results of estimating migration equations of the fonn of equa­

tion (I I. I0). The first row refers to the average migration rate for the whole period, 1955­

90. The coefficient on the log of initial income per capita is 0.0126 (0.0061). As expected,

net migration is negatively associated with own density (-0.0049 [0.0022]) and positively

associated with neighbor's density (0.0190 [0.0034]). The extreme temperature variable is

insignificant.

The next seven rows in table I 1.5 show results for the 5-year subperiods beginning

with 1955-60. The estimated coefficient on initial income is significantly positive for all

subperiods, except for 1975-80, for which the coefficient is positive, but insignificant.

The joint estimate is 0.0 I 88 (0.0019), which implies that, other things equal, a 10 percent

increase in a prefecture's per capita income raises net in-migration by enough to raise that

prefecture's rate of population growth by 0.19 percentage points per year. This result is

close to that found for the U.S. states. A test of the stability of the income coefficients over

time is rejected with a p value of 0.006.

The own-density variable is significantly negative, except for the first subperiod, and the

neighbors' density variable is positive for all subperiods (significantly so for four of the

seven subperiods). The extreme weather variable is negative, but only marginally significant.
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Table 11.5
Regressions for Net Migration into Japanese Prefectures. It)55 -<)0

Log. of Own Ncighhors
Per Capita Extreme Population Populalion

Period Income Temperature Density Density R'!a [

1955-90 0.0126 0.00014 -O.lX)49 0.0190 0.62

10,00(1) (0.00062) (o.OOn) (0.0034) [O.OO6Ij

1955--60 0.0216 -0.00014 0.0060 0.0025 0.85

(O.OO}6) (0.00012) (0.0013) (0.0019) [0.O()}81

1960--65 0.0317 -0.00014 -0.0019 0.0147 0.74

(O.()()58) (0.00012) (0.0020) (0.0031 ) [0.0071 ]

1965-70 0.0344 -0.00014 -0.0065 0.0142 0.71

(0.00701 (O.{)()()12) (0.0017) (00025) [0.00661

1970--75 0.0194 -0.00014 -0.()()64 0.0114 0.53

(0.0060) (0.00012) (0.0015) (O.OOB) {O.00701

1975-80 OJ)060 -0.00014 -0.0037 0.0052 0.32

(0.0067) (OJJOO 12) (0.0011) (0.0014) 10.OO43!

1980....85 0.0101 -O.{)()() I4 -0.0023 0.0037 0.39

(0.0044) (0.00012) (0.0006) (0.0086) {O.OO301

1985....90 0.0148 -0.00014 -0.0026 0.IXl46 0.56

(0.(Xl40) (0.00012) (0.0006) (0.0084) [0.0029J

Joint, 7 0.0188 -0.(X)040 individual individual

subperiods 10.(019) (0.00015) coefficients coefllcients

.'lore: The likelihood-rario statistic for the hypothesis that the income coefficients are tbe same is 18.0, wilh a
p value of 0.006. The regressions use iterative. weighted least squares to estimate equations of the form

mil = a, + b . )og(Yi.l- r} + ('I . Temp; + e2, . Tru- r + ("31 . 7l;:;'_T + ('41 . District; + C5t • Sj/

where mil is the net now of migrants into prefecture i between years t - T and I, expressed as a ralio to lhe
population at time I - T; Temp; is a measure of extreme temperature, calculated as deviations of maximum
and minimum temperatures from the average lemperature; lCi,I- T is populalion density (thousands of persons per
square kilometer); ,..::;_T is the population deosity of the neighboriog prefectures (see the text); District, is a
sct of dummy variables for the district; aod 5" is the structural variable described in the texl. All samples have
47 observations. (See the note to table 11.4 for additional information.)

11.8 Migration Across European Regions

We now estimate the sensitiv ity of the net migration rate to income across the regions of the

five large European countries: Germany, the United Kingdom, Italy, France, and Spain. The

dependent variable is the average net migration rate for each of the four decades starting in

1950, We are missing observations for the United Kingdom in the I950s and 1980s and for

France in the J980s.
We estimate a system of regressions similar to those for the United States and Japan. The

explanatory variables are the logarithm of per capita GDP or income at the beginning of

Ihe decade, population density al the beginning of the decade, sectoral variables (shares in

employmenl or GDP of agriculture and indulJry at the start of each decade), a temperature

variable, and country dummies. We estimate a system of equations for the five countries,
with the density and temperature variables restricted to have the same coefficients over lime

and across countries but with the coefficients of the other variables allowed to vary over
time and across countries.

Table 11.6 reports the estimated coefficients on the log of initial per capita GDP or
income. The first column contains the estimates for the 1950s, the second for the I960s,

and so on. The last column restricts the coellicients to be the same over the decades. The

first row is for Germany, the second for the United Kingdom, the third for Italy, the fourth
for France, and the fifth for Spain. The last row restricts the coefficients to be the same for
the five countries.

Table 11.6
Rcgressions for Net Migration into EUCl1pcan Regions, I95(J..-90. Coellicients on the Log of PerCarila GOP

1950s 1960s 1970s 1980s Total

Gernwny 0.0311 0.0074 0.()O40 0.IKI24 0.0076
(0.0121) (O.lX)88) (0.IXI38) (0.0086) (0.1X)14)

United Kingdom O.O()·+q -O.lX)69 -IJ.O(J4\
(O.IX) III (O.IX)I3) (O.lXl23)

Italy 0.0182 0.0208 0.IJ089 O,031l9 0.0117
(0.0041) (0.0027) (0.0020) (0.0106) (0,(lOI8)

France 0.0090 -O.IXJ08 0.0097 0.0100
(0.0056) 10.0(95) (0.0041) (0.0036)

Srain 0.0126 IJ.O 135 0.0117 0.0031 0.0034
(0.0068) (00112) (0.0063) (0.1X)70) (0.0021)

Overall 0.0107 0.0072 0.0046 0.0141 0.0064
(0.0038) (0.1X)40) (0.0024) (0.0070) (0.0021)

Note: The regressions take the form

mijt = ajl + bjl .log(Yij,r-T)"+ ('( . TempI) + ('2 ·1lij.I-T

+ C3 . (Counlry dummy) + C4jt . AGij.,_T + C5jl .INij.I-T

where mijt is the net flow of migrants imo region i of country j between years I - T and t. expressed as a ratio to
the population at time 1- T; Tempi) is the average maximum temperature; If'j.t-T is population density (thousands
of persons per square kilometer); AG'j.,_T is tbe share of employment or GDP (for the 1980s) in agriculture; and
INjj.,_T is the corresponding share io industry. All estimation is by the iterative, seemingly unrelated procedure.
The table repons only the estimates of the coefficients b jt . The numbers in the first five rows and lirst four columns
apply when each counlry has a different coefficient for each period. The last column reslricls (he coefficients to be
the same over time for each country. The last row restricts the coeflicienls lO be the same across countries for each
decade. The number in the interseclion of the lasl row and column applies when all countries and lime periods
have a single coefficient.
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Migralion
Migration

(I)
Migratloll
Excluded

0.093\ 0.0174 0.006
0.0196 0.023\ to.0(33) (0.048)

(0.0025) (0.0028) (0.0305) )311 -0.108
0.0340 0.0907 01 .

0.03 12 0 tJ(42) (0.112)
(1).(v)44) (0.0041) ( .

Ill.0040) ~ 0542
-0.Ot4 0.0181 - .

00243 0.0240 (0.0093) (0.429)
(0.0088) (00091) (0.235) '61 0222
0.0176 0.0220 0.\16 0.0. (0.570)

(0.0 13.2) (0.0203) (0.395) (00267)
80 -0.121

0.0244 0.166 0.01
00206 00098) (0.370)

(0,(lO70) (0.156) ( .
(0.0058) 0177 -0.084
0.0224 0.0172 -0.038 O. (0.178)

France. (0.0063) (0.126) (0.0065)
195D-801J (002651 _ 0.124 0.0268 -0.068
Spain. 0.0245 0.0295 0 102) (0.0119) (0.203)
1950---90 (0.0102) (00096) ( . . .

. . .. GOP are analugous to the joint eSllmatlOn<
. f h wlh rale< 01 per capita Income or d t hIe II 3

NOle The regressIOns or t e gro '... e II 2 column 3. for lhe Japanese prefectures: an a ...
shown in lable 11.1. column 3. for the U.S. states. t.,bl .ye i.t[ e Euro an cnuntries are lrealed separately here).
column 2. for {he European regions (except lhal the h . : ~,e or d;;p and lhe migralion coefficient< refer. to
The f3 coefficients refer 10 the log of Illitlal per ca.plu ,,~c~ included a~ a regressor. Tn c"lumn 2 lhe migraUon
the net migration rate. In col~m~ I the nllgrauo~:~~ ;'instrumenlal eslimalion is used. The instruments are the
rate is added. and the esumatlon IS hy OLS. tn co . d' table II 4 for lhe United Slales.lahle 11.5 for Japan.
regressors included in the migration equatIOns. a< reporte III .

and table I1.6 for Europe.
"Two subperiods.
"Three subperiods.

Italy,
1950---90

United Kingdom,
1960---80"

. 00196 (00025) close to thefamiliar 2 percent
the regressions. The speed of convergence IS . . (T'he coefficient on this variable

h . t' on rate as a regressor.
per year. Column 2 adds tenet mlgra I. . d fficient on the migration

• C h subpenod.) The estimate coe .
isconstramedtobethesame,oreac . f I'! 00231 (00028), IS

.' 0093 (0030) and the estimate 0 1" • .
rate is positive and stgmficant,. '.' 1 1 Thus contrary to expectations, the
actually somewhat higher than that shown III co umn. :

. . '. h h net migration rate IS held constant.
estimate of f3 does not dtmlmsh w en t e . t'on rate Specifi-. ., h d neity of the net mlgra I .

The results are hkely Illfluenced by teen oge win to factors not held constant by the
cally, states with more favorable growth prospects ~~ h g capita growth rates and higher
included explanatory variables) are likely to have Ig eh~fPte~n m'lgration by using as instru-

. t . late exogenous s 1 s 1
net migratIon rates. We attempt 0 ISO . . t I'n table 11 4 These

. d t plain the net migration ra e ..
ments the explanatory vanabies u~e 0 ex f h in degree days. (The assumption
variables include population denSIty and the log 0 eat g

Germany.
1950--90

Japan.
\955-90

United Stales,
1920-90

Table 11.7
Migralion and C:(o,:n:Ye~rg~e:nn",ce,-'__. -;-~--

- (3)
(2) Migraliun

Migration Included (IV)
Included (OLS)

11.9 Migration and Convergence

In contrast with the results for the United States and Japan, the coefficients on the log ofper
capita GDP or income are not precisely estimated for the European countries. For Germany,
the estimated coefficient for the 1950s is positive and significant, 0.031 (0.012), whereas
those for the other three decades are insignificant. The estimated income coefficients for
Italy are significantly positive. but many of those for the United Kingdom, France, and
Spain are insignificant.

If we restrict the coefficients to be the same over time but allow them to vary across
countries, the estimated values are 0.0076 (0.00 J4) for Germany, -0.0041 (0.0023) for
the United Kingdom, 0.0117 (0.0018) for Italy. 0.0100 (0.0036) for France, and 0.0034
(0.0021) for Spain. If we restrict the coefficients to be the same across countries but allow
them to vary over time, the estimated values are 0.0107 (0.0038) for the 1950s, 0.0072
(0.0040) for the I960s, 0.0046 (0.0024) for the 1970s, and 0.0141 (0.0070) for the 1980s.
Finally, if we restrict the coefficients to be the same across countries tlnd over time, we get
the estimate 0.0064 (0.0021). Although this estimate is significantly positive, the size of the
coefficient is much smaller than the comparable values for the United States (0.026) and
Japan (0.019). The main finding. therefore, is that the migration rate for European regions
is positively related to per capita GDP or income, but the magnitude of the relation is weak,
and the coefficients cannot be estimated with great precision.

We found in chapter 9 that the migration of workers with low human capital from poor to
rich economies tended to speed up the convergence of per capita income and product. The
convergence coefficients estimated in growth regressions would include this effect from
migration. In this section we attempt to estimate the effect of migration on convergence
by including the net migration rate as an explanatory variable in the growth regressions. If
migration is an important source of convergence--and if we can treat the migration rate as
exogenous with respect to the error term in the growth equation-the eSlimated convergence
coefficient, fJ, should become smaller when migration is held constant.

We enter the contemporaneous net migration rate in growth regressions in table 11.7.
The first row reports the estimated speed of convergence, fJ, for the U.S. states. The sample
period, 1920~90, is divided into seven ten-year subperiods. The regression includes period­
specific coefficients for constant terms, dummies for the four major census regions, and the
structural variable discussed before. The coefficient on the log of initial per capita income
is constrained to be the same for each subperiod. This setup parallels the joint estimation
shown in table 11.1, column 3, except for the elimination of the two early subperiods.

Column I of the table reports the estimate of fJ when the migration rate is not included in
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11,10 {J Convergence in Panel Data with Fixed Effects

Figure 11.12
Income Coefficient of Migration and Speed of Convergence. The vertical axis shows the estimated coefficient
on the log of per capita income or GDP from migration regressions. The horizontal axis has the estimated fJ
convergence coefficient from growth regressions, The seven data points-For the United States. Japan, Germany,
the United Kingdom. Italy, France, and Spain---exhibit a positive relation, as predicted by the theory of migration
and growth.

Following Islam (1995), a number of researchers have attempted to estimate the speed of
convergence using panel data sets and variants of fixed-effects estimation. Caselli, Esquivel,
and Laffort (1996), for example, use panel data for a cross section of countries, while
Canova and Marcet (1995) use regional data. One claimed advantage of panel data over
cross sections is that one does not need to hold constant the steady state because it can be
implicitly estimated using fixed effects. The main result is that estimates of the speed of
convergence from panel data with fixed effects tend to be much larger than the 2 percent­
per-year number estimated from cross sections or panels without fixed effects. Speeds of
convergence in the range of 12 to 20 percent per year are not uncommon in this literature.
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15. The fJ coefficients for France and the United Kingdom are those estimated over the same subperiods for which
the migration data are available. The fJ coefficient estimated over the full sample is lower for France and higher
for the United Kingdom. If we use these alternative estimates of fJ. the correlation with the coefficient from the
migration equations is slightly higher, 0.32.

is that these determinants of migration do not enter directly into the growth equation.) The
results, contained in column 3 of table 11.7, show an insignificant coefficient on the migra­
tion rate, -0.006 (0.048), and an estimated f3 coefficient, 0.0174 (0.0033), that is slightly
lower than that in column I. These results suggest that migration does not account for a
large part of f3 convergence for the U.S. states.

The second row oftable I 1.7 applies the same procedure to Japan. The first column reports
the joint estimate of f3 over seven fi ve-year periods when the migration rate is excluded as a
regressor. The estimate of f3, 0.0312 (0.0040), is the same as that in column 3 of table 11.2.
When the migration rate is added in column 2 of table 11.7, the estimated coefficient on
migration is positive and similar to that found for the United States, 0.0907 (0.0041), and
the estimate of f3 increases to 0.0340 (0.0044). In column 3, which includes instruments
for migration, the estimated coefficient on migration is insignificant, -0.11 (0.11), and the
estimate of f3, 0.0311 (0.0042), is essentially the same as that in column I. Hence, as for
the U.S. states, migration does not appear to be a major element in f3 convergence for the
Japanese prefectures.

The last five rows of table 11.7 apply an analogous procedure to the five large European
countries. The main findings are similar to those for the United States and Japan in that
the estimated f3 coefficients do not change a great deal when migration rates are held
constant. One surprising result is that the net migration rates are insignificant in the OLS
regressions for the European regions, whereas the usual endogeneity story suggests positive
coefficients. It may be that the regional net migration rates are not well measured for the
European countries, a possibility that would also account for the difficulties in the estimated
migration equations in these cases.

A second prediction from the migration theory in chapter 9 is that economies with higher
sensitivity of net migration to per capita income will have higher convergence coefficients,
f3. To check this possibility, we plot in figure 11.l2 the estimated fJ coefficients against the
estimated coefficients of the log of per capita GDP or income from the migration equations.
The figure has seven data points, corresponding to the United States, Japan, Germany, the
United Kingdom, Italy, France, and Spain. The figure shows a weak positive relation between
the two coefficients; the correlation is 0.27. 15 The imprecision with which the coefficients
in the migration equations are estimated for the European countries suggests that this relation
should be interpreted with caution. See Braun (1993) for further discussion of this approach.
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One potential problem with the fixed-effects approach is that, in order to work, one
needs to include many time-series observations. This procedure can be carried out only
by shortening the time periods within which the growth rate is computed. In other words,
the dependent variable tends to be the yearly growth rate or the growth rate over two to
five years. The problem with such short time spans is that the growth rates tend to capture
short-term adjustments around the trend rather than long-term convergence. In particular,
the existence of business cycles tends to bias upward the estimates of speeds ofconvergence.
In this context, Shioji (1997) provides evidence that, once one corrects for the measurement
error introduced by business cycles, the estimated speed of convergence from panels with
fixed effects is still close to 2 percent per year.

11.11 Conclusions

We studied the behavior of the U.S. states since 1880, the prefectures of Japan since 1930,
and the regions of eight European countries since 1950. The results indicate that absolute fJ
convergence is the norm for these regional economies. That is, poor regions of these coun­
tries tend to grow faster per capita than rich ones. The convergence is absolute because it
applies when no explanatory variables other than the initial level of per capita product or
income are held constant.

We can interpret the results as consistent with the neoclassical growth model described
in chapters I and 2 if regions within a country have roughly similar tastes, technologies, and
political institutions. This relative homogeneity generates similar steady-state positions. The
observed convergenpe effect is, however, also consistent with the models of technological
diffusion described in chapter 8.

One surprising result is the similarity of the speed of fJ convergence across data sets. The
estimates of fJ are around 2-3 percent per year in the various contexts. This slow speed of
convergence implies that it takes 25-35 years to eliminate one-half of an initial gap in per
capita incomes. This behavior deviates from the quantitative predictions of the neoclassical
growth model if the capital share is close to one-third. The empirical evidence is, however,
consistent with the theory if the capital share is around three-quarters.

The analysis of migration indicates that the rate of net migration tends to respond pos­
itively to the initial level of per capita product or income, once a set of other explanatory
variables is held constant. This relation is clear for the U.S. states and the Japanese prefec­
tures but is weaker for the regions of five large European countries. We also check whether
the presence of fJ convergence in the regional data can be explained by the behavior of net
migration. The evidence here is not definitive but suggests that migration plays only a minor
role in the convergence story.

11.12 Appendix on Regional Data Set..

We describe data for the U.S. states, regions of eight European countries (Germany, the
United Kingdom, Italy, France, the Netherlands, Belgium, Denmark, and Spain), and pre­
fectures of Japan. Data for regions of other countries, such as Argentina, Brazil, China,
India, Mexico, and the USSR, are also available. Additional information is available by city
and county; see, for example, Ades and Glaeser (1995).

11.12.1 Data for U.S. States

Table 11.8 shows a sampling of the data for the U.S. states (shown on the U.S. map in
figure I 1.13). Figures on nominal personal income and nominal per capita personal income
are available by state since 1929 from the U.S. Commerce Department (Bureau of Economic
Analysis, 2002; updates appear in issues of u.s. Survey ofCurrent Business). The concept
of personal income used in these regional accounts corresponds to that employed in the
national accounts. The numbers are reported annually, but values prior to 1965 are based
on interpolations of estimates constructed at approximately five-year intervals. Data are
reported with and without transfer payments. Figures on gross state product are available
annually since 1963 (from issues of U.S. Survey ofCurrent Business).

Reliable data on price levels are unavailable by state, although some information exists for
cities. We have computed real income by dividing the nominal figures on personal income
by the national values of the consumer price index (1982-84 = 1.0). (We used the figures
from Citibase for all items except shelter since 1947. Before 1947, we used the overall
index from U.S. Department of Commerce, 1975, series EI35.) As long as the same index
is used at each date for each state, the particular index chosen does not affect the relative
levels and growth rates across the states.

Earlier income figures are reported by Easterlin (1960a, 1960b) for 1920 (48 states), 1900
(48 states or territories), 1880 (47 states or territories, with Oklahoma excluded), and 1840
(29 states or territories). These data are exclusive of transfer payments, and the figures for
l840 do not cover all components of personal income. Estimates of the consumer price
index for all items (U.S. Department of Commerce, 1975, series E 135) are used to deflate

these earlier values.
For the census years since 1930, labor earnings (including those from self-employment)

can be broken down into nine sectors: agriculture; mining; construction; total manufacturing;
transportation and public utilities; wholesale and retail trade; finance, insurance, and real
estate; services; and government and government enterprises. For periods before 1930,
information is available on the fraction of income originating in agriculture.
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Table 11.8
Data for U.S. States

Real Per Capita Real Per Capita Growth Rate of Population, Population, Growth Rate of Net Migrants,
Income, 1900 ($1000s, Income, 2000 ($1 ooos, Real Per Capita 1900 1990 Population, 1900-89

State 1982-84 base) 1982-84 base) Income (millions) (millions) 1900-90 (millions)

AL Alabama 1.00 12.95 0.0256 1.829 4.046 0.0088 -1.32
AZ Arizona 3.69 13.79 0.0132 0.093 3.681 0.0409 2.03
AR Arkansas 1.03 12.[1 0.0246 1.312 2.353 0.0065 -1.14
CA California' 4.20 17.78 0.0[44 1.403 29.956 0.0340 16.59
CO Colorado 3.66 17.90 0.0159 0.529 3.302 0.0203 1.11
cr Connecticut 3.19 22.55 0.0196 0.908 3.290 0.0[43 0.76
DE Delaware 2.52 17.15 0.0192 0.185 0.669 0.0143 0.18
FL Rorida 1.29 15.36 0.0248 0.529 13.044 0.0356 9.37
GA Georgia 0.98 15.33 0.0275 2.222 6.504 0.0120 -0.28
!D Idaho 2.54 13.04 0.0164 0.154 1.011 0.0209 0.04
IL lllinois 2.99 17.57 0.0177 4.822 11.443 0.0096 -0.17
IN Indiana 2.09 14.81 0.0196 2.516 5.554 0.0088 -0.30
[A Iowa 2.33 14.55 0.0183 2.232 2.780 0.0024 -1.41
KS Kansas 2.15 15.12 0.0195 1.470 2.480 0.0058 -0.65
KY Kentucky 1.38 13.27 0.0226 2.147 3.690 0.0060 -1.54
LA Louisiana 1.47 12.71 0.0216 1.382 4.211 0.0124 -0.52
ME Maine 2.16 14.02 0.0187 0.694 1.231 0.0064 -0.11
MD Maryland 2.34 18.55 0.0207 1.188 4.802 0.0155 1.26
MA Massachusetts 3.49 20.81 0.0179 2.850 6.020 0.0083 0.14
MI Michigan 2.13 16.04 0.0202 2.421 9.314 0.0150 0.62
MN Minnesota 2.38 17.61 0.0200 1.737 4.390 0.0103 -0.34
MS Mississippi 0.97 11.51 0.0247 1.551 2.574 0.0056 -1.62
MO Missouri 2.16 15.00 0.0194 3.107 5.127 0.0056 -0.83
MT Montana 4.77 12.44 0.0096 0.226 0.799 0.0140 -0.07
NE Nebraska 2.43 15.26 0.0184 1.066 1.580 0.0044 -0.71
NY Nevada 4.54 16.31 0.0128 0.035 1.224 0.0395 0.79

NH New Hampshire 2.46 18.23 0.0200 0.412 I.Ill 0.0110 0.31
NJ New Jersey 3.19 20.48 0.0186 1.884 7.735 0.0157 2.20
NM New Mexico 1.70 12.08 0.0196 0.180 1.520 0.0237 0.16
NY New York 3.71 19.04 0.0164 7.269 18.002 0.0101 1.13
NC North Carolina 0.82 14.81 0.0289 1.894 6.653 0.0140 -0.30
NO North Dakota 2.40 13.67 0.0174 0.312 0.637 0.0079 -0.49
OH Ohio 2.55 15.40 0.0180 4.158 10.859 0.0107 0.14
OK Oklahoma 1.31 13.01 0.0230 0.670 3.146 0.0172 -0.19
OR Oregon 2.85 15.26 0.0168 0.395 2.861 0.0220 1.27
PA Pennsylvania 2.88 16.30 0.0173 6.302 11.893 0.0071 -1.99
RI Rhode Island 3.36 16.09 0.0157 0.429 1.005 0.0095 0.05
SC South Carolina 0.86 13.22 0.0273 1.340 3.498 0.0107 -0.75
SD South Dakota 2.ll 14.34 0.0192 0.381 0.696 0.0067 -0.43
TN Tennessee 1.16 14.28 0.0251 2.021 4.887 0.0098 -0.46
TX Texas 1.58 15.30 0.0227 3.049 17.055 0.0191 3.33
UT Utah 2.ll 12.89 0.0181 0.272 1.729 0.0206 0.06
VT Vermont 2.19 14.85 0.0191 0.344 0.565 0.0055 -0.05
VA Vrrginia 1.27 17.14 0.0260 1.854 6.213 0.0134 0.61
WA Washington 3.40 17.18 0.0162 0.496 4.909 0.0255 2.16
WV West VIrginia 1.35 12.01 0.0219 0.959 1.790 0.0069 -1.10
WI Wisconsin 2.05 15.49 0.0202 2.058 4.906 0.0097 -0.33
WY Wyoming 3.57 15.14 0.0144 0.089 0.452 0.0181 0.03

Notes: The two-letter abbreviation (zip code) for each of the 48 states is shown before the state name.
The U.S. Census regional classifications are as follows:
Northeast: ME, NH, VT, MA, RI, cr, NY, NJ, PA.
South: DE, MD, VA, WV, NC, SC, GA, FL, KY, TN, AL, MS, AR, LA, OK, TX.
Midwest: MN. lA, MO, NO, SD, NE, KS, OH, IN, IL, M[, WI.
West: MT, !D, WY, CO, NM, AZ, UT, NY, WA, OR, CA.
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Figure 11.13
Map of the U.S. states.

Population density is the ratio of population to total area (land plus water); the data on
area are in U.S. Department of Commerce, Bureau of the Census (1990). Net migration
flows can be computed from census figures by taking the change in population over a period,
subtracting the number of births, and adding the number of deaths.

11.12.2 Data for European Regions

Table 11.9 has a sampling of the data for regions of European countries (shown on the
map in figure 11.14). We have data on GDP, population, and related variables for regions
of eight European countries-Germany (II regions), the United Kingdom (11), Italy (20),
France (21), the Netherlands (4), Belgium (3), Denmark (3), and Spain (17).

For the countries other than Spain, the data on GDP and population for 1950, 1960, and
1970 are from Molle, Van Holst, and Smits (1980). Figures for 1966 (missing France and
Denmark), 1970 (missing Denmark),. 1974, 1980, 1985, and 1990 (missing Denmark) are
from Eurostat. For Spain, data on regional income and GDP are provided for various years
from 1955 to 1987 by the Banco de Bilbao (various issues). The figures on population
are from INE, Anuario Estatistico de Espana (various issues). The data applied originally
to 50 provinces and have been aggregated to 17 regions.
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Table 11.9
(Continued)

Real Per Capita GDP, Real Per Capita GDP, Growth Rate of Real Net Migrants,
1950 Proportionate 1990 Proportionate Per Capita GDP Population, Population, Various
Deviation from Deviation from Deviation from 1950d 1990' Growth Rate of Periods~

Region Country MeanQ Country Meanb Country Meanc (millions) (millions) Population! (millions)

Spain

75. Andalucia -0.29 -0.29 0.0002 5.621 6.920 0.0053 -1.67
76. Aragon O.oI 0.08 0.0022 1.095 1.213 0.0026 -0.12
77. Asturias 0.17 -0.06 -0.0074 0.893 1.126 0.0059 -0.02
78. Balears 0.08 0:34 0.0080 0.423 0.682 0.0122 0.12
79. Canaries -0.22 -0.03 0.0059 0.800 1.485 0.0158 0.02
80. Cantabria 0.18 0.05 -0.0043 0.406 0.527 0.0067 -0.04
81. Castilla-La Mancha -0.43 -0.26 0.0052 2.028 1.714 -0.0043 -0.91
82. Castilla-Leon -0.13 -0.11 0.0007 2.864 2.626 -0.0022 -0.97
83. Catalunya 0:34 0.25 -0.0029 3.271 6.008 0.0156 1.42
84. Euskadi (Basque) 0.74 0.11 -0.0197 1.075 2.129 0.0175 0.43
85. Extremadura -0.58 -0.43 0.0047 1.366 1.129 -0.0049 -0.70
86. Galicia -0.36 -0.20 0.0050 2.604 2.804 0.0019 -0.41
87. Madrid 0.48 0.34 -0.0042 1.956 4.876 0.0234 1.40
88. Murcia -0.35 -0.15 0.0062 0.759 1.027 0.0078 -0.16
89. Navarra 0.19 0.13 -0.0019 0.384 0.521 0.0078 0.00
90. LaRioja 0.11 0.14 0.0008 0.230 0.260 0.0032 -0.03
91. Valencia 0.05 0.10 0.0014 2.316 3.787 0.0126 0.54

QDifference of logarithm of per capita GDP in 1950 from country mean in 1950. Values for Spain are for 1955.
bDifference of logarithm of per capita GDP in 1990 from country mean in 1990. Values for Denmark are for 1985 and for Spain are for 1987.
cDifference of annual growth rate of per capita GDP from 1950 to 1990 from country mean growth rate. Values for Denmark are for 195~5 and for Spain are for
1955--87.
d Values for Spain are for 1951.
'Values for Denmark are for 1986.
! Annual growth rate of population from 1950 to 1990. Values for Denmark are for 1950-86 and for Spain are for 1951-90.
gTIme periods are 1954-88 for Germany, 1961-85 for the United Kingdom, 1951-87 for Italy, 1954-82 for France, and 1951-87 for Spain.
Note: The numbers for the regions correspond to those used for the map in figure I 1.4.
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Chapter 11

We do not have regional price data. In addition, the figures on GDP are sometimes pro­
ed in an index form that are not comparable across countries. We have therefore focused
regional GDP figures that are expressed as deviations from means for the respective

ntries.
:or the countries other than Spain, Molle, Van Holst, and Smits (1980) provide a break­
'n of employment into three sectors-agriculture, industry, and services-for 1950,
0, and 1970. For the other years, Eurostat provides a division of GDP into the same
e sectors. For Spain, the breakdown of GOP into these three components for the various
·s is available from Banco de Bilbao (various issues).
et migration flows are computed for the five larger countries from information on pop­
on, births, and deaths. The national sources are as follows: Germany: Statistischen
desamtes, Statistisches Jahrbuch fur die Bundesrepublik Deutschland, various years.
ed Kingdom: Population Trends 51, Spring 1988. France: INSEE, Statistiques et 1ndi­
urs des Regions Francaises, 1978; INSEE, Donnes de Demographie Regionale 1982,
i. Italy: ISTAT, Sommario Storice di Statistiche Sulla Populazzione: Anni 1951-1987,
l. Spain: INE, Anuario Estatistico de Espana, various issues.

Z.3 Data for Japanese Prefectures

for Japanese prefectures are in table 11.10 (a prefectural map is shown in figure 11.15).
Ilgures on income are collected since 1955 by the Economic Planning Agency (EPA)
pan. The accounts are constructed in accordance with the" 1983 standardized system
efectural accounts," so that all figures are comparable. The aggregate of the income
~s from the 47 prefectures coincides theoretically with Japan's national income. The
rre collected annually and published in the Annual Report on Prefectural Accounts. For
, we obtained income data by prefecture from National Economy Studies Association.
o not have price data by prefecture and therefore use national price indexes to deflate
region's income.
ta on population are from the Statistics Bureau at the Management and Coordination
cy. The principal source of these figures is the quinquennial population census taken
: Statistics Bureau.
gration data are collected by the Statistics Bureau. These figures are derived from the
Resident Registers and the Statistical Survey on Legal Migrants. These data exclude

1S without Japanese nationality.
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Table 11.10
(Continued)

Real Per Capita Real Per Capita
Income, 1955a Income, 1990 Growth Rate of Population, Population, Growth Net Migrants,
(million yen, (million yen, Real Per Capita 1955 1990 Rate of 1955-90'"

Prefecture 1985 base) 1985 base) Incomei' (millions) (millions) Population (millions)

28. Hyogo 0.618 2.668 0.0418 3.660 5.405 0.0071 0.29
29. Nara 0.418 2.190 0.0473 0.777 1.375 0.0104 0.30
30. Wakayama 0.438 2.109 0.0449 1.012 1.074 0.0011 -0.15
31. Tottori 0.373 2.193 0.0506 0.615 0.616 0.0000 -0.12
32. Shimane 0.336 2.121 0.0527 0.931 0.781 -0.0032 -0.26
33. Okayama 0.413 2.555 0.0521 1.716 1.926 0.0021 -0.16
34. Hiroshima 0.478 2.678 0.0492 2.180 2.850 0.0049 0.00
35. Yamaguchi 0.445 2.299 0.0469 1.619 1.573 -0.0005 -0.34
36. Tokushima 0.344 2.297 0.0542 0.898 0.832 -0.0014 -0.20
37. Kagawa 0.394 2.524 0.0531 0.951 1.023 0.0013 -0.11
38. Ehime 0.397 2.157 0.0483 1.563 1.515 -0.0006 -0.37
39. Kochi 0.367 2.025 0.0484 0.917 0.825 -0.0019 -0.18
40. Fukuoka 0.490 2.502 0.0466 3.867 4.811 0.0040 -0.28
41. Saga 0.368 2.131 0.0502 0.982 0.878 -0.0020 -0.34
42. Nagasaki 0.369 2.027 0.0487 1.795 \.563 -0.0025 -0.65
43. Kumamoto 0.326 2.294 0.0558 1.898 1.840 -0.0006 -0.47
44.Dita 0.316 2.218 0.0556 1.298 1.237 -0.0009 -0.30
45. Miyazaki 0.317 2.078 0.0537 1.155 1.169 0.0002 -0.28
46. Kagoshima 0.255 2.019 0.0591 2.084 1.798 -0.0027 -0.68
47. Okinawa 0.282 1.880 0.0542 0.801 1.222 0.0077 -0.01

aValue for Tochigi is for 1960.
bValue for Tochigi is for 1960-90.
"Value for Okinawa is for 1965-90.
Notes: The numbers for the prefectures correspond to those used for the map in figure 11.15. The district classifications are as follows: District 1 (Hokkaido-Tohoku),
prefectures 1-8. District 2 (Kanto-Koshin), prefectures 9-17. District 3 (Chubu), prefectures 18-24. Dislricl4 (Kinki), prefectures 25-30. District 5 (Chugoku), prefectures
31-35. District 6 (Shikoku), prefectures 36-39. DistrlCl7 (Kyushu), prefectures 4D-47.

tTl
3

"S! .
::1.
(')

a

::::2

>-

.. 0Cl

::l

"CIC

""

e.~

'<en

... -

t;;.

.. :-
"CI -

0

.. '"

....,

=

;>;:l

~

~

"CI

o'

~

::l

if

.,
0

=

.,

~

S
en
cor;;

V1

s

lJl

~




