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1 1 Empirical Analysis of Regional Data Sets

A key property of the neoclassical growth model is its prediction of conditional convergence,
a concept that applies when the growth rate of an economy is positively related to the
distance between this economy’s level of income and its own steady state. Conditional
convergence should not be confused with absolute convergence, a concept that applies
when poor economies tend to grow faster than rich ones (and, therefore, the poor tend
to “catch up”). It is possible that two economies converge in the conditional sense (the
growth rate of each economy declines as it approaches its own steady state) but not in the
absolute sense (the rich economy can grow faster than the poor one if the former is further
below its own steady state). The two concepts are identical if a group of economies tend to
converge to the same steady state. We found in chapters | and 2 that neoclassical economies
with similar tastes and technologies converge to the same steady state. Therefore, in this
case, the neoclassical growth model predicts absolute convergence; that is, poor economies
tend to grow faster than rich ones. Thus one way to test the convergence hypothesis is to
check whether economies with similar tastes and technologies—economies that are likely
to converge to the same steady state—converge in an absolute sense.

In this chapter, we test the convergence predictions of the neoclassical growth model by
looking at the behavior of regions within countries. Although differences in technology,
preferences, and institutions exist across regions, these differences are likely to be smailer
than those across countries. Firms and households of different regions within a single
country tend to have access to similar technologies and have roughly similar tastes and
cultures. Furthermore, the regions share a common central government and therefore have
similar institutional setups and legal systems. This relative homogeneity means that regions
are more likely to converge to similar steady states. Hence, absolute convergence is more
likely to apply across regions within countries than across countries.

It can be argued that using regions to test the convergence hypothesis is incorrect because
inputs tend to be more mobile across regions than across countries. Legal, cultural, linguistic,
and institutional barriers to factor movements tend to be smaller across regions within a
country than across countries. Hence, the assumption of a closed economy—a standard
condition of the neoclassical growth model—is likely to be violated for regional data sets.
However, we found in chapter 3 that the dynamic properties of economies that are open to
capital movements can be similar to those of closed economies if a fraction of the capital
stock—which includes human capital—is not mobile or cannot be used as collateral in
interregional or international credit transactions. The speed of convergence is increased by
the existence of capital mobility but remains within a fairly narrow range for reasonable
values of the fraction of capital that is mobile. Another result is that a technology without
diminishing returns to capital—that is, some version of the AK technology—implies a zero
convergence speed whether the economy is open or closed.
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We also found in chapter 9 that the allowance for migration in neoclassical growth
models tends to accelerate the process of convergence. The change is, again, a quantitative
modification to the speed of convergence. The main point, therefore, is that although regions
within a country are relatively open to flows of capital and persons, the neoclassical growth
model still provides a useful framework for the empirical analysis.

11.1 Twe Concepts of Convergence

Two concepts of convergence appear in discussions of economic growth across countries or
regions. In one view (Barro, 1984, chapter 12; Baumol, 1986: DeLong, [988; Barro, 1991a;
Barro and Sala-i-Martin, 1991, 1992a, 1992b), convergence applies if a poor economy
tends to grow faster than a rich one, so that the poor country tends to catch up to the rich
one in terms of levels of per capita income or product. This property corresponds to our
concept of B convergence.' The second concept (Easterlin, 1960a; Borts and Stein, 1964,
chapter 2; Streissler, 1979; Barro, 1984, chapter 12; Baumol, 1986; Dowrick and Nguyen,
1989; Barro and Sala-i-Martin, 1991, 19923, 1892b) concerns cross-sectional dispersion, In
this context, convergence occurs if the dispersion—measured, for example, by the standard
deviation of the logarithm of per capita income or product across a group of countries or
regions—declines over time. We call this process o convergence. Convergence of the first
kind (poor countries tending to grow faster than rich ones) tends to generate convergence
of the second kind (reduced dispersion of per capita income or product), but this process is
offset by new disturbances that tend to increase dispersion,

To make the relation between the two concepts more precise, we consider a version of the
growth equation predicted by the neoclassical growth model of chapter 2. Equation (2.35)
relates the growth rate of income per capita for economy i between two points in time to
the initial level of income. We apply equation (2.35) here to discrete periods of unit length
(say years), and we also augment it to include a random disturbance:

log(yir/yis—1) = ay — (1 - e‘ﬂ) <log(yii—1) + uy; (1.1)

where the subscript 1 denotes the year, and the subscript i denotes the country or region.
The theory implies that the intercept, a;,, equals x; 4 (1 —e~#). {log(37) + x; - (t — 1)}, where
37 is the steady-state level of $; and x; is the rate of technological progress. We assume
that the random variable u;, has 0 mean, variance a},, and is distributed independently of
Yo (¥is—1), uy for j # i, and lagged disturbances.

1. This phenomenon is sometimes described as “regression toward the mean.”
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We can think of the random disturbance as reflecting unexpected changes in produc-
tion conditions or preferences. We begin by treating the coefficient a;, as the same for all
economies so that a;, = q,. This specification means that the steady-state value, y;, and
the rate of exogenous technological progress, x;. are the same for all economies. This‘ a§-
sumption is more reasonable for regional data sets than for international data sets; lt‘ is
plausible that different regions within a country are more similar than different countries
with respect to technology and preferences.

If the intercept a;, is the same in all places and B > 0, equation (1 1.1) implies that poor
economies tend to grow faster than rich ones. The neoclassical growth models of chapters |
and 2 made this prediction. The AK model discussed in chapter 4 predicts, in contrast, a
0 value for B and, consequently, no convergence of this type. The same conclusion holds
for various endogenous growth models (chapters 6 and 7) that incorporate a linearity in the
production function.? '

Since the cocfficicnt onlog(y; ;_1) in equation (11.1) is less than 1. the convergence is not
strong enough to eliminate the serial correlation in log(y; ). Put alternatively, in l4he a.bsence
of random shocks, convergence to the steady state is direct and involves no oscillations or
overshooting. Therefore, for a pair of economies, the one that starts out behind is predicted
to remain behind at any future date.

Let 0,2 be the cross-economy variance of log(y;,) at time ¢. Equalior.l (11.1) and the
assumed properties of u;, imply that 0,2 evolves over time in accordance with the first-order
difference equation®

ol=e% .02 +o? (11.2)

where we have assumed that the cross section is large enough so that the sample variance
of log(y:,) corresponds to the population variance.

If the variance of the disturbance, o2, is constant over time (0} =02 for all 1), the
solution of the first-order difference equation (11.2) is

2
2 g,

_ u + 0,2___ <
T - 0 12

=

o

) e (11.3)
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where 002 is the variance of log(y;o). (It can be readily verified that the solution in equa-
tion [11.3] satisfies equation [11.2].) Equation (11.3) implies that a,2 monotom'cally gp—
proaches its steady-state value, o2 = 02/(1 — e~?#), which rises with a2 but declines with

2. We showed, however, in chapter 4 that 8 convergence would apply if the technology were asymptotically AK
but featured diminishing retwms to capital for finite X.

3. To derive equation (11.2), add 0g(y;,¢~1) to both sides of equation (11.1), compute the variance, and use the
condition that the covariance between u;r and log(yi,_1) is 0.
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Figure 11.1

T hcor?tlcal behavior of_'dispersiun. The figure shows the dispersion of per capita product, measured as the vari-
ance of lhg log of per capita product across economies. Although 8 convergence is assumed to apply, the dispersion
may {all, rise, or remain constant, depending on whether it starts above, below, or at its steady-state value, 2. The
figure assumes f = 0.02 per year. ’ T

the convergence coefficient, 8. Over time, o? falls (or rises) if the initial value o4 is greater
than (or less than) the sieady-state value, o 2. Thus a positive coefficient 8 (8 convergence)
does not imply a falling o} (¢ convergence). To put it another way, B convergence is a
necessary but not a sufficient condition for o convergence.

Figure 11.1 shows the time pattern of 02 with 62 above or below 2. The convergence
coefficient used, 8 = 0.02 per year, corresponds to the estimates that we report in a later
section. With this value of 8, the cross-sectional variance is predicted to fall or rise over
time at a slow rate. In particular, if o departs substantially from the steady-state value, o2,
then it takes about 100 years for o, to get close to o2,

The cross-sectional dispersion of log(y;) is sensitive to shocks that have a common
influence on subgroups of countries or regions. These kinds of disturbances violate the
condition that u;, in equation (11.1) is independent of uj, fori # j. To the extent that these
shocks tend to benefit or hurt regions with high or low income (that is, to the extent that
the shocks are correlated with the explanatory variable), the omission of such shocks from
the regressions will tend to bias the estimates of B.

Examples are shocks that generate changes in the terms of trade for commodities. For
the United States, an example is the sharp drop in the relative prices of agricultural goods
during the 1920s. This disturbance had an adverse effect on the incomes of agricultural

Empirical Analysis of Regional Data Sets 465

regions relative to the incomes of industrial regions. We can think also of the two oil price
increascs of the 1970s and the price decline of the 1980s. These shocks had effects in the
same direction on the incomes of oil-producing regions relative to other regions. Another
example for the United States is the Civil War. This shock had a strong adverse impact on
the incomes of southern states relative to the incomes of northern states.

Formally, let S, be a random variable that represents an economy-wide disturbance for
period t. For example, S, could reflect the relative price of oil as determined on world
markets. Then equation (11.1) can be modified to

log(yi/vis—1) = air — (1 — e_ﬂ) log(yi 1)+ @S + ujyy (11.4)

where ¢; measures the effect of the aggregate disturbance on the growth rate in region i.
If a positive value of S, signifies an increase in the relative price of oil, then ¢; would be
positive for countries or regions that produce a lot of oil.* The coefficient ¢; would tend to
be negative for economies that produce goods, such as automobiles, that use oil as an input.
We think of the coefficient ¢; as distributed cross sectionally with mean ¢ and variance 0‘3.
Iflog(y;,—) and ¢; are uncorrelated, estimates of B inequation (11.4) would be consistent
when the shock is omitted from the regression. If log(¥;, 1) and ¢; are positively correlated,
the coefficient estimated by OLS on log(y;,-) in equation (11.4) would be positively
or negatively biased as S, is positive or negative. As an example, if oil producers have
relatively high per capita income, an increase in oil prices will benefit the relatively rich
states. Consequently, an OLS regression of growth on initial income will underestimate the
true convergence coefficient. In the empirical analysis of the next sections, we hold constant
proxies for S; as an attempt to obtain consistent estimates of the convergence coefficients.
Equation (11.4) implies that the variance of the log of per capita income evolves as

ol =e .0l ol +S7 0l +2S -eP covllog(yi,_1), ¢i] (11.5)

where the variances and covariances are conditioned on the current and past realizations of
the aggregate shocks, S;, S;_y, .. .. If cov[log(yi:—1), ¢;] equals O—that is, if the shock is
uncorrelated with initial income—equation (11.5) corresponds to equation (11.2), except

that realizations of §, effectively move 03, around over time. A temporarily large value of

S, raises a2 above the long-run value o2 that corresponds to a typical value of S;. Therefore,
in the absence of a new shock, o returns gradually toward o2, as shown in figure 11.1.

4. More precisely, this shock would have a positive effect on the real income derived from the countries or regions
that produce a lot of oil. This income may be owned by *foreigners™ and appear as part of the net factor payments
from “abroad,” the term that differentiates GNP from GDP. For example, a substantial fraction of the capital inputs
of Wyoming is owned by residents of other states. A positive oil shock will increase Wyoming’s nominal GDP
(and raise the real value of this GDP when deflated by a national price index) but not necessarily raise its GNP or
personal income. For the U.S. states, this distinction is important in a few cases, notably for oil producers.
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11.2 Convergence Across the U.S. States

11.2.1 B Convergence

We now use the data on per capita income for the U.S. states to estimate the speed of
convergence, 8.° (The definitions and sources of the data are in the appendix, section | 1.12.)
Suppose, for the moment, that we have observations at only two points in time, 0 and 7.
Then equation (2.35) implies that the average growth rate of per capita income for economy
i over the interval from 0 to T is given by

(1/T) - log(yir/yi0) = x = [(1 = PT)/T] - log(yi) + [(1 — e PTY/T1 log(3) + uinr
(11.6)

where u;o 7 represents the effect of the error terms, u;,, between dates 0 and T 3* is the
steady-state level of income; and x is the rate of technological progress, which we assume
is the same for all economies.

The coefficient on initial income in equation (11.6) is (I — e=#7)/ T, an expression that
declines with the length of the interval, T, for a given B. That is, if we estimate a linear
relation between the growth rate of income and the log of initial income, the coefficient is
predicted to be smaller the longer the time span over which the growth rate is averaged.
The reason is that he growth rate declines as income increases (if yip < J7). Hence, if we
compute the growth rate over a longer time span, it combines more of the smaller future
growth rates with the initially larger growthrates. Hence, as the interval increases, the effect
of the initial position on the average growth rate declines. The coefficient (I — e #7/T)
approaches 0 as T approaches infinity, and it tends to 8 as T approaches 0.

Notice that equation (11.6) includes the term [(1 - e~ PT)/T] log(y’) as an explanatory
variable. That is, the growth rate of economy ¢ depends on its initial level of income, yio,
but it also depends on the steady-state level of income. This is why we use the concept
of conditional rather than absolute convergence: the growth rate of an economy depends
negatively on its initial level of income, after we “condition” on the steady state.

5. Barro and Sala-i-Martin (1992a) also use the data on gross state product (GSP), reported by the Bureau of
Economic Analysis. GSP is analogous to GDP in that it assigns the product to the state in which it has been
produced. In contrast, income (like GNP) assigns the product to the state in which the owners of the inputs reside.
This distinction is potentially important if the economies are open and people tend to own capital in other states,
or if there 15 a lot of interstate commuting (people live in one state and work in another). Barro and Sala-i-Martin
(1992a) show that, in practice, the distinction turns out not to be that important; the estimates of the speed of
convergence for GSP are similar to those for personal income. Since GSP data are available only startingin 1963,
we limit attention i this chapter to the results that use the income data.
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The usefulness of using regional data can be seen as follows: imagine that, instead of
estimating the multivariate equation (1 1.6), we estimate the univariate regression

(1/T) - log(yir /i) = a = [(1 = e™"T)/ T} - 10g(y0) + wio.r k)

Notice that, in equation (1 1.7), the term [(1 —e~# )/ T1-log($}) is no longer an explanatory
variable. If the term that multiplies initial income in equation (11.7) turns out to be negative,
we will conclude that poor economies tend to grow faster than rich economies so that
“absolute convergence” applies. It is for this reason that regressions like equation (11.7)
.have been used in the literature to test the absolute convergence hypothesis. The question
is whether the failure to find a negative coefficient is reason to reject the neoclassical
growth model. Remember that the neoclassical model predicts amultivariate relation such as
equation (11.6). Suppose that, instead of equation (11.6), we estimate equation (11.7). If we
analyze data sets in which the various economies converge to different steady states, that is
97 # 3; foralli and j, then the univariate regression equation (11.7) is misspecified and the
excluded term is incorporated into the error termy: wio. 7 = 0.7 +{(1 — e“”)/ T] log($}).
If the steady-state level of income, y*, is correlated with the explanatory variable yo,
the error term is correlated with the right-hand-side variable, and the univariate regression
equation (1 [.7) will provide biased estimates of 8. In particular, if currently richer economies
tend to converge to a higher steady-state level of income (that is, if 9 and y;o are positively
correlated), the estimate of B in equation (11.7) is biased toward zero. In other words,
researchers could find no relation between growth and the initial level of income, even
though conditional convergence holds. Under these circumstances, the only way to get
consistent estimates of § is to get measures of $; and include them in the regression.

Imagine now that we have a data set in which the various economies converge to different
steady states, but that there is no correlation between the initial and the steady-state level of
income. Although the univariate regression is still misspecified, the error term (which again
includes the missing variable, $7) is not correlated with the explanatory variable. Hence,
the usual estimation of equation (11.7) can provide a consistent estimate of 8. Finally, if
we analyze a data set in which all economies have the same steady state, that is, if Jf = 37
foralli and j, the term [(1 — e=#7)/T'] - log(9}) is incorporated into the constant term, anéi
the usual estimation of equation (11.7) will again provide a consistent estimate of 8.

In sum, there are two ways to estimate the speed of convergence, 8. The first is to use
general data sets (that is, data sets for which there is no guarantee that the initial level of
income is uncorrelated with the steady-state level of income) and find proxies for the steady-
state level of income. The second is to use data sets in which the various economies tend to
converge to similar steady states or that, at least, the steady states are unrelated to the initial
level of income. This second context is the one in which regional data sets play an important
role. Although differences in technology, preferences, and institutions exist across regions,
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these differences are likely to be smaller than those across countries. Firms and households
of different regions within a single country tend to have access 1o similar technologies and
have roughly similar tastes and cultures. Furthermore, the regions share a common central
government and therefore have similar institutional setups and legal systems. This rclative
homogeneity means that absolute convergence is more likely (o apply across regions within
countries than across countries.

Table [ 1.1 shows nonlinear least-squares estimates in the form of equation (11.7) for 47
or 48 U.S. states or territories for various time periods. The rows of table | [.1 correspond to
the difterent time periods. For example, the first row applies to the 120-year period between
1880 and 2000. The first column of the table refers to the equation with only one explanatory
variable, the logarithm of income per capita at the beginning of the period. Column two
adds four regional dummies, corresponding to the four main census regions: Northeast,
South, Midwest, and West. Finally, column three includes sectoral variables that are meant
to capture the aggregate shocks discussed in the previous section. We already argued that
the inclusion of these auxiliary variables would help to obtain accurate estimates of 8.

Each cell contains the estimate of 8, the standard error of this estimate (in parentheses),
the R?, and the standard error of the regression (in brackets). All equations have been
estimated with constant terms, which are not reported in table i 1.1,

The point estimate of 8 for the long sample, 1880-2000, is 0.0172 (s.e. = 0.0024).
The high R?, 0.92, can be appreciated from figure 11.2, which provides a scatter plot of
the average growth rate of income per capita between 1880 and 2000 against the log of
income per capita in |880.

The second column of the first row presents the estimated speed of convergence when
the four regional dummies are incorporated. The estimated 8 coefficient is 0.0160 (0.0034).
The similarity between this estimate and the previous one suggests that the speed at which
average incomes converge across the census regions is not substantially different from the
speed at which average incomes converge for the states within each of the regions. We can
check this result by computing the average income for each of the four regions. The growth
rate of a region’s average income between 1880 and 2000 is plotted against the log of the
region’s average income in 1880 in figure | 1.3. The negative relation is clear (the correlation
coefticient is —0.97). The estimated speed of convergence implied by this relation is 2.1
percent per year, about the same as the within-region rate shown in column 2.

The next ten rows of table 11.1 divide the sample into subperiods. The first two are twenty
years long (1880 to 1900 and 1920 to 1940), because income data for 1890 and 1910 are
unavailable. The remaining eight subperiods are ten years long.

6. This regression includes 47 states or territories. Data for the Oklahoma territory are unavailable for 1880.
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‘Table 11.1
Regressions for Personal Income Across U.S. States

(n 2) (3)
Eqguations with
Structural Variables
and Regional Dummies

Equations with

Basic Equation Regional Dummies

Period B R4 8 RG] B RY6]
18802000 0.0172 0.92 0.0160 0.95 — —
0.0024) [0.0012] (0.0034) 10.0010]
1880-1900 0.0101 0.36 0.0224 0.62 0.0268 0.65
(0.0022) [0.0068} (0.0043) [0.0054] ©.0051) [0.0053]
1900-20 0.0218 0.62 0.0209 0.67 0.0270 0.71
(0.0031) [0.0065] (0.0065) 10.0062] (0.0077) 10.0060]
1920-30 —0.0149 0.14 —(.0128 0.43 0.0209 0.64
(0.0051) 10.0132) (0.0078) [0.0111] 0.0119) 10.0089]
193040 0.0129 0.28 0.0072 0.34 0.0147 0.37
{0.0033) [0.0079] (0.0052) [0.0078] (0.0083) 10.0078]
1940-50 0.0502 0.73 0.0512 0.88 0.0304 091
(0.0058) 10.0087] (0.0062) 10.0059] (0.0065) 10.0052]
195060 0.0193 0.40 0.0191 0.52 0.0305 0.74
(0.0039) 10.0051] (0.0056) 10.0047] (0.0053) [0.0035)
1960-70 0.0286 0.6 0.0181 0.73 0.0196 0.74
(0.0039) 10.0040] (0.0046) [0.0034] (0.0061) [0.0035]
1970-80) 0.0186 0.27 0.0079 0.44 0.0057 0.46
(0.0049) [0.0044] 10.0055) (0.0040] (0.0068) 10.0040}
1980-90 0.0036 0.01 0.0095 0.57 0.0029 0.69
(0.0085) (0.0077] (0.0074) [0.0052] (0.0070) [0.0045]
1990-2000 0.0016 0.01 —~0.0005 0.07 0.0029 0.14
(0.0035) 10.0035] (0.0045) [0.0035) (0.0050) [0.0034)
Joint, 9 0.0150 — 0.0164 — 0.0212 —
subperiods (0.0015) — (0.0021) — (0.0023) —

Note: The regressions use nonlincar least squares 10 estimate equations of the form
(/T) - Jog(vir /yi-1) = a = [log(yis—p)] - [(1 = e #T)/ T + other variables

where ;.7 is per capita income in state i at the beginning of the period divided by the overall CPI, T is the
length of the interval, and the other variables are regional dummies and structural measures (see the description
in the text). Sec the appendix (section 11.12) for a discussion of the data on the U.S. states. The samples that
begin in 1880 have 47 observations. The others have 48 obscrvations. Each column contains the estimate of B, the
standard error of this estimate (in parentheses), the R2 of the regression, and the standard error of the equation (in
brackets). The estimated coefficients for constants, regiona! dummies, and structural variables are not reported.
The likelihood-ratio satistic refers to a test of the equality of the coefficients of the Jog of initial income over the
nine subperiods. The p value comes from a 2 distribution with eight degrees of frecdom.
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Figure 11.2
Convergence of personal income across U.S. states: 1880 personal income and 1880-2000 income growth.
The average prowth rate of stale per capita income for 1880-2000, shown on the vertical axis, is negatively related

10 the Jog of per capita income in 1880, shown on the horizontal axis. Thus, absolute f convergence exists for the
U.S. states.

The estimated 8 coefficient is significantly positive—indicating 8 convergence—for
seven of the ten subperiods. The coefficient has the wrong sign (8 < 0) for only one of the
subperiods, 1920-30, a time of large declines in the relative price of agricultural commodi-
tics. A likely explanation for this result is that agricultural states tended to be poor states, and
the agricultural states suffered the most from the fall in agricultural prices. The estimated
coefficient is insignificant for the two most recent subperiods, the 1980s and the 1990s. If
we constrain the 8 coefficients to be the same for all subperiods, the joint estimate for the
basic equation is 0.0150 (0.0015).

Column 2 of Table 11.1 adds regional dummies, where the coefficients of these dummies
are allowed to differ for each period. These regional variables capture effects that are
common to all states within a region in a given period. The estimated 8 coefficient for
the 1920s still has the wrong sign, as does the the coefficient for the 1990s, although they
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Cfnvergence of personal income across U.S. regions: 1880 income and 1880—20(?0 income growth: TI}e
negative relation between income growth and initial income, shown for the U.S. states in figure 11.2, applies in
figure 11.3 to averages over the four main census regions.

are both estimated with substantial error. Hence, even within regions, poor states tended to
grow slower than rich states during the 1920s. The joint estimate for the nine subperiods is
now 0.0164 (0.0021), similar to that for the basic regression. .

Aggregate shocks that affect groups of states differentially, such as shifts in the relative
prices of agricultural products or oil, might explain the instability of the estimated coeffi-
cients. Following Barro and Sala-i-Martin (1991, 1992a, 1992b), the third column of table
11.1 adds an additional variable to the regression as an attempt to hold these aggregate
shocks constant. The variable, denoted by S;, (for structure), is calculated as

9
Si=3_ wijur - 1108/ yj-1)/T] (11.8)

j=1

where w;j,_7 is the weight of sector j in state i's personal income at time ¢ — T and yj, is
the national average of personal income per worker in sector J at time ¢. The nine sectors
used are agriculture, mining, construction, manufacturing, trade, finance and real estate,
transportation, services, and government. We think of S;; as a proxy for the effects reflected
in the term ¢; S in equation (11.4).
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The structural variable reveals how much a state would grow if each of its sectors grew at
the national average rate. For example, suppose that economy / specializes in the production
of cars and that the aggregate car sector does not grow over the period between t — T and
t. The low value of S;, for this region indicates that it should not grow very fast because the
car industry has suffered from the shock.

Note from equation (11.8) that S;; depends on the contemporaneous growth rates of
national averages and on lagged values of state i’s sectoral shares. For this reason, the
variable can be reasonably treated as exogenous to the current growth experience of state .

Because of lack of data, we can include the structural variable only for the periods after
1929. For the periods before 1929, we obtain a rough measure of S;, by using the share of
agriculture in the state’s total income.

Column three includes structural variables, as well as regional dummies, in the growth
regressions. (The coefficients on the regional and structural variables are allowed to differ
for each period.) One contrast with the previous resuits is that the estimated 8 coefficient
for the 1920s becomes positive and close to 0.02. The coefficients for the 1980s and 1990s
are also positive but their size continues to be small. The joint estimate of 8 for the nine
subperiods is 0.0212 (0.0023).

The main conclusion is that the U.S. states tend to converge at a speed of about 2 percent
per year. Averages for the four census regions converge at a rate that is similar to that for
states within regions. If we hold constant measures of structural shocks, we cannot reject
the hypothesis that the speed of convergence is stable over time, although the estimates for
the last two decades are insignificantly different from zero.

11.2.2 Measurement Error

The existence of temporary measurement error in income tends to introduce an upward bias
in the estimate of 8; that is, the elimination of measurement error over time can generate the
appearance of convergence.’ One reason for measurement error is that each state’s nominal
income is deflated by a national price index, because accurate indexes do not exist at the
state level.

One way to handle measurement error is to use earlier lags of the log of income as
instruments in the regressions. If measurement error is temporary (and the error term is not
serially correlated), the earlier lags of the log of income would be satisfactory instruments
for the log of income at the start of each period. If we reestimate column | of table 11.]
with the previous lag of the log of income used as an instrument, we get a joint estimate

7. The same property holds for short-term business fluctuations. We may want to design a model in which these
temporary fluctuations of output are distinguished from the kinds of transitional dynamics that appear in growth
models.
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of B8 of 0.0176 (0.0019). This panel uses nine subperiods starting in 1900 because the
observation for 1880—1900 is lost. The OLS estimate of B for the same nine subperiods is
0.0165 (0.0018). Hence, the use of instruments generates a minor change in the estimate
of B, which suggests that measurement error does not explain the significantly negative
relation between growth and the initial level of income.

When we estimate the subperiods separaiety, we again find only a small difference be-
tween the instrumental-variable (IV) and OLS estimates. The largest change applies to
1950-60, for which the IV estimate is 0.0139 (0.0040), compared with the OLS value of
0.0193 (0.0039).

The results for columns 2 and 3 of table [ 1.1 are similar. Our conclusion is that measure-
ment error is unlikely to be a key element in the results.

11.2.3 ¢ Convergence

Figure 11.4 shows the cross-sectional standard deviation for the log of per capita personal
income net of transfers for 47 or 48 U.S. states or territories from 1880 to 2000. The
dispersion declined from 0.54 in 1880 to 0.33 in 1920 but then rose to 0.40 in 1930. This
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Figure 11.4

Dispersion of personal income across U.S. states, 1880-2000. The figure shows the cross-sectional standard
deviation of the log of per capita personal income for 47 or 48 U.S. states or territories from 1880 to 2000. This
measure of dispersion declined from 1880 to 1920, rose in the 1920s, fell from 1930 to the mid-1970s, rose through
1988, declined again through 1992, and then remained fairly flat.
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rise reflects the adverse shock to agriculture during the 1920s; the agricultural states were
relatively poor in 1920 and suffered a further reduction in income with the fall in agriculturai
prices.

After reaching a peak in 1932, the dispersion fell to 0.36 in 1940, 0.24 in 1950, 0.20 in
1960, and 0.16 in 1970. The long-run decline stopped in the mid-1970s, with a low point

of 0.14 in 1976. After that, o, rose to a peak of 0.16 in 1988. Dispersion fell to 0.14 in the
early 1990s, then remained relatively flat.

11.3 Convergence Across Japanese Prefectures

11.3.1 B Convergence

Barro and Sala-i-Martin (1992b) analyze the pattern of B convergence for per capita in-
come across 47 Japanese prefectures (see the appendix, section 11.12, for the sources and
definitions). Table 11.2 reports nonlinear estimates of the convergence coefficient, g, for
the period 1930-90. The setup of table 11.2 parallels that of table 11.1.

The first row of table 11.2 pertains toregressions for the whole period, 1930-90. The basic
equation in column 1 includes only the log of initial income as a regressor.
The estimated g coefficient is 0.0279 (0.0033), with an R? of 0.92. The good fit can be ap-
preciated in figure 11.5. The strong negative correlation between the growth rate from 1930
to 1990 and the log of per capita income in 1930 confirms the existence of 8 convergence
across the Japanese prefectures.

The estimated B coefficient is essentially the same in column 2, which incorporates
dummies for the seven Japanese districts as explanatory variables. This finding suggests
that the speed of convergence for prefectures within districts is similar to that across districts.
This idea can be checked by running a regression that uses the seven data points for the
growth and level of the average per capita income of districts. The negative relation between
the growth rate from 1930 to 1990 and the log of per capita income in 1930 is displayed in
figure 1 1.6. The B coefficient estimated from these observations (not reported in the table) is
0.0261 (0.0079). Hence, we confirm that the speed of convergence across districts is about
the same as that within districts.

The second and third rows of table 11.2 break the full sample into two long subperi-
ods, 193055 and 1955-90. For the basic equation, the speed of convergence for the first
subperiod is larger than that for the second, 0.0358 (0.0035) versus 0.0191 (0.0035). The
same relation holds for the second column, which adds the district dummies as explanatory
variables. (Different coefficients on the dummies are estimated for the two subperiods.)
Hence, we conclude that the speed of convergence after 1955 was substantially slower than
that between 1930 and 1955. The lack of sectoral data for the early period does not, how-
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Table 11.2 .
Regressions [or Personal Income Across Japanese Prefectres

N 2) .(3) )
Equations with
Structural Variables
and District Dummies

-

s

Equations with
District Dummies

-

Basic Equation

7 25 3 R4
Period A R I L D S A
—
) 0.97 —
0.0279 0.92 0.0276
193090 (0.0033) 10.0019] ©.0024) [0.0012]
0.90 — —
0.0358 0.86 0.0380
19%0-33 (0.0035) {0.0045) w.0037) {0.0038]
0.81 — —
! 0.0191 0.59 0.0222 .
1995-90 (0.0035) 10.0027]) (0.0035) 10.0020] 0017 .
— 2 0.07 —0.0023 0.44 X X
193300 (8.&1)39) [0.0133] (0082 o1ty o118 Iggém
» - 14 .
65 0.0296 0.30 0.0360 0.55 8.8?)96] 080031
19600 (0.0072) {0.0108] ©.0079) 10.0093] . 0.62 k
965-70 —(0.0010 0.00 0.0127 0.47 gggg%) [()‘0()()51
96 (0.0062) 10.0097] {0.0067) 10.0076] (X ()Am A
. .87 0.0661 .8
0967 Q.78 0.0625 0
97072 (g 89100) 10.00951 0.0092) {0.0078] 0.0118) |(()).(3)(;79]
' 0.37 0.0469 .
0338 0.23 0.0455
197550 (88 100) 10.0087] (0.0119) 10.0085] (0.0145) {22(;86]
0-85 —-0.0115 0.04 0.0076 0.37 88(1)842‘) [0i0067]
1980 (0.0077) [0.0075] (0.0089) 10.0066] (0. s
. 0.0085 .
0.00 0.0086 0.28 )
198350 (8.00((;2;) [0.0067] (0.0082) {0.0061] (0.0085) [0.0062]
. — 0.0312 —
Joint, 7 subperiods 0.0125 — 0.0222 0040 -
Likelihood-ratio (1.0032) — ;'820 ) &
statistic 94.6 (()'000) 0002
(p value) (0.000) X

of the data on Japanese prefectures, and see the note to
_ is per capita income in prefecture i at tpe'begmmng
47 ohservations. The likelihood-ratio statisic refers 10
bperiods. The p value comes

Note: See the appendix (section 11.12) for a disc_ussion
Lable 11.1 for the form of the regressions. Tlt]]e Va“?bk; yL‘ é
e . a
f the period divided by the overall CP1. All samples have ?
z(c:g‘?lhe equality of the coefficients of the log of initial income over the seven su
from a x2 distribution with six degrees of freedom.
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anTl};e next seven rows of table 11.2 break the sample into five-year subperiods starting 1n
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Figure 11.5

Convergence of personal income across Japanese prefectures: 1930 income and 1930-90 income growth.
The growth rate of prefectural per capita income for 1930-90, shown on the vertical axis, is negatively related to
the log of per capita income in 1930, shown on the horizontal axis. Thus absolute B8 convergence exists for the
Japanese prefectures. The numbers shown identify each prefecture; see table 11.10.

is 0.0125 (0.0032). A test for the equality of coefficients over time is strongly rejected; the
p value is 0.000.

The results with district dummies in column 2 allow for different coefficients on the
dummies in each subperiod. In this case, only the estimated 8 coefficient for 1955-60 has
the wrong sign, and it is not significant. The joint estimate is 0.0232 (0.0034). However, we
still reject the equality of coefficients; the p value is again 0.000.

Column 3 adds a measure of the structural variable, S;,, defined in equation (11.8). This
variable is analogous to the one constructed for the U.S. states. The coefficients on the
structural variable are allowed to differ for each subperiod. In contrast with the previous
two columns, none of the subperiods has the wrong sign when the sectoral variable is
included. The joint estimate for the seven subperiods is 0.0312 (0.0040). We still reject the
hypothesis of coefficient stability over time: the p value is now 0.002.
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Cognvergence of personal income acrass Japanese districts: 1930 income and 1930-90 _ln;ome gllio;vt:. ’:‘il;es
negative relation between income growth and initial income. shown for Japanese prefectures in figure 1.0, app
also in figure 11.6 to averages for the seven major districts.

One source of instability in the estimated B coefficients is that Tokyo is an outlier in the
1980s: Tokyo was by far the richest prefecture in its district in 1980 and ha.d the largest
growth rate from 1980 to 1990, an outcome not captured by the stn.lctural variable Fhat we
have included. If we add a dummy for Tokyo for the 1980s, we get estimated 8 coefﬁc1ents of
0.0218 (0.0112) for 1980-85 and 0.0203 (0.0096) for 1985-90. With this dummy included,
the test of equality of coefficients now rejects with a p value of 0.010.‘ .

Another source of instability is the period 1970-75, for which the estlmatfad B coefﬁcx_ent
of 0.0661 (0.01 18) is substantially higher than the others. A likely explanation f0}' this high
estimated value of B is that the oil shock of 1973 had an especially adverse 1r.npact on
the richer industrial areas. The structural variable is supposed to hold constant this type (?f
shock, but the construct that we have been able to measure does not seem to capture this
effect.
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As with the U.S. states, we reestimated the equations for Japanese prefectures with earlier
lags of income used as instruments. The conclusion again is that the estimates are not
materially affected. For example, in column 3 of table 11.2, the joint estimate of g falls
from 0.0312 (0.0040) to 0.0282 (0.0042) when the instruments are used.

11.3.2 o Convergence Across Prefectures

We want now to assess the extent to which there has been o convergence across prefectures
in Japan. We calculate the unweighted cross-sectional standard deviation for the log of per
capita income, o, for the 47 prefectures from 1930 to 1990. Figure 11.7 shows that the
dispersion of personal income increased from 0.47 in 1930 to 0.63 in 1940. One explanation
of this phenomenon is the explosion of military spending during the period. The average
growth rates for districts 1 (Hokkaido-Tohoku) and 7 (Kyushu), which are mainly agricul-
tural, were —2.4 percent and —|.7 percent per year, respectively. In contrast, the industrial
regions of Tokyo, Osaka, and Aichi grew at 3.7, 3.1, and 1.7 percent per year, respectively.
The cross-prefectural dispersion decreased dramatically after World War II: it fell to 0.29
in 1950, 0.25 in 1960, 0.23 in 1970, and hit a minimum of 0.12 in 1978. The dispersion
then increased slightly: ¢, rose to 0.13 in 1980, 0.14 in 1985, and 0.15 in 1987, but has been
relatively stable since 1987. Thus the pattern is similar to that for the U.S. states.
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Figure 11.7

Dispersion of personal income across Japanese prefectures, 1930-90. The figurc shows the cross-sectional
standard deviation of the log of per capita personal income for 47 Japanese prefectures from 1930 to 1990. This
measure of dispersion fell from the end of World War II until 1980.
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11.4 Convergence Across European Regions

11.4.1 S Convergence

Barro and Sala-i-Martin (1991) analyzed convergence for 90 regions in eight European
countries: !l in Germany, 11 in the Unijted Kingdom, 20 in ltaly, 21 in France, 4 in the
Netherlands, 3 in Belgium, 3 in Denmark, and 17 in Spain. The data, described in the
appendix (section |1.12), correspond to GDP per capita for the first seven countries and to
income per capita for Spain.

Table | 1.3 shows the estimates of 8 in the form of equation (1 1.6) for the period 1950-90.
The regressions include country dummies for each period to proxy for differences in the
steady-state values of x; and 37 in equation (1 1.6) and for countrywide fixed effects in the
error terms. The country dummies, which are not reported in table 11.3, have substantial
explanatory power. The first four rows of column 1 show the results for four decades. The
estimates of B are reasonably stable over time; they range from 0.010 (0.004) for the 1980s
to 0.023 (0.009) for the 1960s. The joint estimate for the four decades is 0.019 (0.002). The

Table 11.3
Convergence Across European Regions

o) (2)
Equations with
Sectoral Shares and
Country Dummies

Equations with
. Country Dummies

Period B RY5] B R?[8)
1950-60 0.018 0.83 0034 0.84
(0.006) [0.0099] (0.009) [0.0094]
1960-70 0.023 0.97 0.020 0.97
(0.009) [0.0065] (0.006) [0.0064]
1970-80 0.020 099 0.022 0.99
(0.009) [0.0079] (0.007) [0.0077]
1980-90 0.010 0.97 0.007 0.97
(0.004) 10.0066] (0.005) [0.0064]
Joint, 4 sul’ipCl'iOdS 0.019 _ 0018 —
(0.002) — (0.003) —
Likelihood ratio statistic 49 8.6
(p value) (0.179) (0.034)

Note: See the appendix (section 1.12) for a discussion of the data on European regions, and see the note to
table 11.1 fonr the form of the regressions. The variable y; (7 is an index of the per capita GDP (income for Spain)
in region i &t the beginning of the interval. All samples have 90 observations. The likelihood-ratio statistic refers
1o a lest of #he equality of the coefficients of the log of initial per capita GDP or income over the four subperiods.
The p valu= comes from a x? distribution with three degrees of freedom.
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B(Lui?et;yKr?:gagz;anlt[nc]e, ;:u's ﬁgur;]: sl;low}']s llhal absolute f convergence exists for the regions within Germany, the
. ltaly, France, 1 s i ai i ify
mto Kingdom. | 1.Qy. e Netherlands, Belgium, Denmark, and Spain. The numbers shown identify the

hypothesis of constant B over time cannot be rejected at conventional levels of significance;
the p value is 0.18. ,
. Figure 11.8 shows for the 90 regions the relation of the growth rate of per capita GDP
(mcome‘for Spain) from 1950 to 1990 (1955 to 1987 for Spain) to the log of per capita
GDP or income at the start of the period. The variables are measured relative to the means
of the respective countries. The figure shows the negative relation that is familiar from
the U.S. states and Japanese prefectures. The correlation between the growth rate and the
log of initial per capita GDP or income in figure 11.8 is —0.72. Since the underlying
numbers are expressed relative to Own-country means, the relation in figure 11.8 pertains
to f convergence within countries, rather than between countries. The graph [hCTCfOI'fl:
corresponds to the estimates that include country dummies in column 1 of table 11,3,
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Column 2 adds the share of agriculture and industry in total employment or GDP at
the start of each subperiod.* These share variables are as close us we can come with
our present data for the European regions to measuring the structural variable, §;,, that
appears in equation (11.8). The results allow lor period-specific coefficients for the sectoral
shares.

The joint estimate of # for the four subperiods is now 0.018 (0.003). The test of the
hypothesis of stability of 8 across periods yields a p value of 0.034. Thus, in contrast to
our findings for the United States and Japan, the inclusion of the share variables makes
the A coefficients appear less stable over time. Probably, u better measure of structural
composition would yield more satisfactory results.

We have also estimated the joint system tor Europe with individual g coefficients for
the five large countries (Germany, the United Kingdom. lialy, France, and Spain). This
system corresponds to the four-period regression shown in column 2 of table 1.3, except
that the coefticient § is allowed to vary over the countries (but not over the subperiods).
This system contains country dummies (with ditferent coetficients for each subperiod) and
share variables (with coefficients that vary over the subperiods but not across the coun-
tries). The resulting estimates of 8 are as follows: Germany (11 regions), 0.0224 (0.0067);
United Kingdom (11 regions), 0.0277 (0.0104); Italy (20 regions), 0.0155 (0.0037); France
(21 regions), 0.0121 (0.0061); and Spain (17 regions), 0.0182 (0.0048). Note that the indi-
vidual point estimates are all close to 2 percent per year; they range from 1.2 percent per
year for France to 2.8 percent per year for the United Kingdom.

A test for equality of the 8 coefficients across the five countries yields a p value of 0.55.
Hence, we cannot reject the hypothesis that the speed of regional convergence within the
five European countries is the same.

We also reestimated the European equations with earlier lags of per capita GDP or
income used as instruments. This procedure necessitated the elimination of the first sub-
period; hence, we include only the three decades from 1960 to 1990. The use of instru-
ments had little impact on the results that included only country dummies, correspond-
ing to column 1 of table 11.3. The joint estimate of B goes from 0.0187 (0.0022) in
the OLS case (with only three subperiods included) to 0.0165 (0.0023). If the agricul-
tural and industrial share variables are added, however, the joint estimate of  goes from

0.0153 (0.0034) to 0.0073 (0.0038). We think that the sharp drop in the estimated 8 co-
efticient in this case reflects inadequacies in the share variables as measures of structural

shifts.

8. The share figures {or the first three subperiods are bascd on employment. The values for 1980~90 are based on
GDP.
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Figure 11.9

Dispersion of per capita GDP within five European countries. The figure shows the cross-sectional standard
deviation of the log of per capita GDP from 1950 to 1990 for 11 regions in Germany, 11 in the United Kingdom,
20 in Italy, 21 in France, and 17 in Spain. This measure of dispersion fell in most cases since 1950 but has been
roughly stable in Germany and the United Kingdom since 1970.

11.4.2 o Convergence

Figure 11.9 shows the behavior of o, for the regions within the five large countries; Germany,
the United Kingdom, Italy, France, and Spain. The countries are always ranked in descending
order of dispersion as Italy, Spain, Germany, France, and the United Kingdom. The overall
pattern shows declines in o; over time for each country, although little net change occurs
since 1970 for Germany and the United Kingdom. The rise in o, from 1974 to 1980 for the
United Kingdom—the only oil producer in the European sample—likely reflects the effect
of oil shocks. In 1990 the values of ¢; are 0.27 for Italy, 0.22 for Spain (for 1987), 0.19 for
Germany, 0.14 for France, and 0.12 for the United Kingdom.

11.5 Convergence Across Other Regions Around the World

Many researchers have recently studied the patterns of convergence across regions in various
countries around the world. Coulombe and Lee (1993) find that the speed of convergence
across regions in Canada is not too different from the 2 percent per year we found for the
U.S. states, Japanese prefectures, and European regions. Persson (1997) finds similar results
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for 24 Swedish counties for the period 1911-93. Cashin and Sahay (1995) find strong evi-
dence of absolute convergence across Indian states between 1961 and 199 1. Other regional
studies in the recent literature include O’Leary (2000) for Ireland; Petrakos and Saratsis
(2000) for Greece; Hossain (2000) for Bangladesh; Utrera and Koroch (1998) for Argentina;
Magalhaes, Hewings, and Azzoni (2000) for Brazil; Cashin (1995) for Australasia; Yao and
Weeks (2000) for China; Cashin and Loayza (1995) for South Pacific countries; Gezici and
Hewings (2001) for Turkey; and Sanchez-Robles and Villaverde (2001) for Spain.

11.6 Migration Across the U.S. States

This section considers the empirical determinants of net migration among the U.S. states.
The analysis in section 9.1.3 suggests that m;, the annual rate of net migration into region
i between years t — T and 1, can be described by a function of the form

mi = f(yis—1. 6, 7 ,—7; variables that depend on but not i) (11.9)

where y;,_7 is per capita income at the beginning of the period, 6 is a vector of fixed
amenities (such as climate and geography), and 7; ;7 i$ the population density in region {
at the beginning of the period.” The set of variables that depends on ¢ but not on i inclu.des
any elements that influence per capita incomes and population densities in other economies.
Also included are effects like technological progress in heating and air conditioning—these
changes alter people’s attitudes about weather and population density.

Per capita income—a proxy for wage rates—would have a positive effect on migration,
whereas population density would have a negative effect. The functional form that we
implement empirically is

my; =a+b - log(yi,—1) +c16; + 271 + €3~ (igor)? + Vir (11.10)

where vj, is an error term, b > 0, and the form allows for a quadratic in population density,
7 .7 - The marginal effect of 7; 7 on m; is negative if ¢ + 2¢3 < 0.

Although there is an extensive literature about variables 1o include as amenities, 6;, the
present analysis includes only the log of average heating-degree days, denoted log(heat;),
which is a disamenity so that ¢; < 0. The variable log(heat;) has a good deal of explanatory
power for net migration across the U.S. states. We considered alternative measures of ‘the
weather, but they did not fit as well. It would be useful 1o include migration for retire-
ment, a mechanism that likely explains outliers such as Florida. However, these kinds of

9, Some amenities, such as govemment policies with respect to tax rates and regulations, would vary over time.
We do not deal with these types of variables in the present analysis.
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Figure 11,10 o I
M?gration and initial state income, 1900-90. The average net migration ratc for 48 U.S. states or lerritories from

1900 1o 1990. shown on the vertical axis, is positively related to the log of initial per_capilg income, shot\;vln onlll]hi
horizontal axis. Florida, Arizona, California, and Nevada have nolably higher net migration rates than the values

predicted by their initial levels of income.

modifications probably would not change the basic findings that we now present about the

relation between net migration and state per capita income. '
The data on net migration for the U.S. states start in 1900 and are available for every

census year except 1910 and 1930—see Barro and Sala-i-Martin (1991). We calculate the
10-year annual migration rates into a state by dividing the number of net migrants between
dates ¢ — T and ¢ by the state’s population at date ¢ — T. o

Figure 11.10 shows the simple long-term relation between the migration rat.e afid the lgg
of initial income per capita.'® The horizontal axis plots the log of state Per cap.nta .mcomfa in
1900. The positive association is evident (correlation =0.51). The m.am outhe.r is ]flonda,
which has a lower than average initial income per capita and a very high net migration rate

of 3 percent per year.

10. The variable on the vertical axis is the average annual in-migration rate for each state from 1900 to 1987, The

variable is the average for each subperiod weighted by the length of the interval.
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Table 11.4
Regressions for Net Migration into U.S. States, 1900-89
Log of Heating Square of
Per Capita Degree Population Population
Period Income Days Density Density R4]
1900-20 0.0335 —0.0066 ~0.0433 0.0307 0.70
(0.0075) (0.0037) (0.0079} (0.0095) 100111}
1920-30 0.0363 -0.0124 —0.0433 (.0307 0.61
(0.0078) (0.0027) (0.0079) (0.0095) 10.0079]
193040 0.0191 —-0.0048 —0.0433 0.0307 0.71
0.0037) 0.0014) 0.0079) (0.0095) [0.0041]
1940-50 0.0261 —-0.0135 —0.0433 0.0307 082
(0.0055) (0.0022) (0.0079) (0.0095) 10.0065]
1950-60 0.0438 —0.0205 —0.0433 0.0307 0.70
(0.0086) (0.0031) (0.0079) (0.0095) [0.0091]
1960-70 0.0435 —0.0056 —0.0433 0.0307 0.70
(0.0083) (0.0025) (0.0079) 0.0095) [0.0069]
1970-80 0.0240 -0.0077 —0.0433 0.0307 0.73
0.0091) (0.0024) (0.0079) ©.0095) [0.0072]
1980-89 0.0163 —0.0066 —0.0433 0.0307 0.72
(0.0061) (0.0019) (0.007%) (0.0095) [0.0053]
Joint, 8 subperiods 0.0260 individual —0.0427 0.0300 —
(0.0023) coelficients (0.0079) (0.0097) —

Note: The likelihood-ratio stalistic for a test of the cquality of the income coefficients over the eight subperiods is
17.1. witha p value of 0.017 (from a x 2 distribution with seven degrees of treedom). The regressions use iterative,
weighted least squares and take the form

My = da; + by - 10g(yi,—1) + 01 - Heat +¢a- 77 +c3- 7’:‘2,1—7 + c4y - Region; +cs, - Sjy

where m;, is the net flow of migrants into state i between years f — T and /, expressed as a ratio to the population at
1 — T; Heay; is heating degree days; , 7 is population density (thousands of persons per square mile); Region;
is a set of dummies for the four main census regions; and S;, is the structural variable described in the text. The
estimates of a,, ¢4, and cs, are not shown. The data are discussed in the appendix (section 11.12). All samples
have 48 observations. Standard errors are in parentheses.

Table 11.4 shows regression results in the form of equation (11.10) for net migration
into U.S. states. The results reported are for eight subperiods starting with 1900-20. The
regressions include period-specific coefficients for log(y;,-r) and for the log of heating-
degree days. (The hypothesis of stability over the subperiods in the coefficients of log[heat; ]
is rejected at the 5 percent level, although the estimated coefficients on log[y; ;-] change
little if only a single coefficient is estimated for the heat variable.) Since the hypothesis
that the coefficients for the population-density variables are stable over time is accepted at
the 5 percent level, we estimate equation (11.10) with one coefficient for the density and
one for the square of the density. The regressions also include period-specific coefficients
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for regional durmmies and structural-share variables. (The estimated coefficients for the
regional and structural variables are sometimes significant but play a minor role overall.)

The estimated coefficients for log(heat;) in table 1].4 are all negative and most are
significantly different from O; other things equal, people prefer warmer states. The jointly
estimated coefficients for density are —0.043 (0.008) on the linear term and 0.030 (0.010)
on the squared term. These point estimates impl'y that the marginal effect of population
density on migration is negative for all states, except for the three with the highest densities:
New Jersey, Rhode Island since 1960, and Massachusetts since 1970.

The coefficient on the log of initial per capita income is significantly positive for all
subperiods. The joint estimate is 0.0260 (0.0023). The estimated response of migration to
the log of initial level is, however, not stable over time: the p value for the rejection of this
hypothesis is 0.017. The main sources of instability are the unusually |large coefficients on
income in the 1950s and 1960s; the coefficients in these two subperiods are 0.0438 (0.0086)
and 0.0435 (0.0083), respectively.

Although highly significant, the jointly estimated coefficient on initial income, 0.026, is
small in an economic sense. The coefficient means that, other things equal, a 10 percent
differential in income per capitaraises net in-migration only by enough toraise the area’srate
of population growth by 0.26 percent per year. Our previous results suggest that differences
in per capita income tend themselves to vanish at a slow speed, roughly 2 percent per
year. The combination of the results for migration with those for income convergence
suggests that net migration rates would be highly persistent over time. The data confirm this
idea: the correlation between the average migration rate for 190040 with that for 1940-89
is 0.70.

11.7 Migration Across Japanese Prefectures

Before we analyze migration across Japanese prefectures and implement equation (11.10)
for Japan, we should mention that there is a substantial difference between the typical
Japanese prefecture and the typical U.S. state in terms of area. The average size of a
Japanese prefecture is 6394 square kilometers,!! roughly half the size of Connecticut. The
largest prefecture, Hokkaido, is 83,520 km?, or roughly the size of South Carolina. The
second largest prefecture, Iwate, has an area of 15,277 km?, a bit larger than Connecticut
and a bit smaller than New Jersey. In comparison, the average U.S. state has an area of
163,031 km?, and the area of the largest state in the continental United States, Texas, is

11. This figure excludes Hokkaido, which is about five times as large as any of the other prefectures. The average
size including Hokkaido is 8036 km?, two-thirds the size of Connecticut.
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691,030 km?. California, with an area of 411,049 km?, is slightly larger than all of Japan
(377,682 km?).

The contrast in size means that Japanese prefectures resemble metropolitan areas more
than states, so that daytime commuting across prefectures can be significant. Urban
economists, such as Henderson ( 1988), think that people like to live in cities for two reasons.
First, there are demand or consumption externalities. That is, cities provide amenities, such
as theaters and museums, features that can be supplied only if there is a sufficient scale of
demand. Second, there are production externalities, which tend to generate high wages in
big cities. An offsetting force is that people want to live away from crowded cities because
they tend to be associated with crime, less friendly neighborhoods, and (in equilibrium)
high land and housing prices (see Roback, 1982). Thus the decision to migrate to a city
involves a trade-off. This trade-off can be avoided if people live in a suburb and commute to
the central city. People are especially willing to pay high commuting costs when densities
in the central city are extremely high.

To deal with these issues empirically, we would like to have a measure of the density of the
neighboring prefectures. Conceptually, we could construct such a measure by weighting the
neighbors’ densities by their distance in some way. In practice, however, we observe that
there are two main areas in Japan that have an abnormally high population density, Tokyo and
Osaka. In 1990, Tokyo’s density was 5470 people/km? and Osaka’s was 4674 people/km?,
compared to an average for the other prefectures of 624 people/km?.'? Hence, the problems
that we have mentioned are likely to arise in these two regions only. We can confirm this
idea by considering the ratio of daytime to nighttime population, a measure of the extent
of commuting."® A ratio smaller than one indicates that there are people who live in that
prefecture but work in another, and a ratio larger than one indicates the opposite. The ratio
is close to one for all prefectures except for the ones around Tokyo and Osaka: Tokyo’s
ratio is 1.184 and Osaka’s is 1.053. The ratios for the Tokyo region are 0.872 for Saitama,
0.876 for Chiba, and 0.910 for Kanagawa. For the Osaka region, the ratios are 0.955 for
Hyogo, 0.871 for Nara, and 0.986 for Wakayama.*

We constructed a variable called neighbor’s density by assigning the prefectures of
the Tokyo area (Tokyo and its immediate neighbors, Saitama, Chiba, and Kanagawa) and
the Osaka area (Osaka and its immediate neighbors, Hyogo, Nara, and Wakayama) the
average density of their immediaté neighbors. For other prefectures, the variable equals its

12. In comparison, the U.S. state with the largest density in 1990 was New Jersey with 390 people/km?,
13. The source of these data is the Statistics Bureau, Management and Coordination Agency.

14. There seems to-be some commuting across prefectures in the areas surrounding Kyoto and Aif:hi. but the
magnitudes are much smaller; Aichi's ratio is 1.016 (and its neighboring prefecture, Gifu, has a ratio of 0.977)
and Kyoto's is 1.011,
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own population density. We expect to find a positive relation between migration and this
neighbor variable and a negative relation between migration and own density. This relation
would indicate that people do not like to live in dense areas (they have to pay the congestion
costs) but like to be close to these areas (so that they get the benefits of a big city).

The functional form that we estimate is

my=a+b-log(yi,—r)+ a6 +cm,_r +cr]i_;+ vy

(11.11)

where v;, is anerrorterm, and "} _; is the population density of the surrounding prefectures.

To calculate the amenity (weather) variable, we squared the difference between the maxi-
mum and average temperatures, added the square of the difference between the minimum
and average temperatures, and then took the square root. Hence, this variable measures ex-
treme temperature. A variable similar to the one used for the United States (heating degree
days) was unavailable. We experimented with other weather variables, such as maximum
and minimum temperatures and average snowfall over the year. These alternative variables
did not fit as well.

Figure 11.11 shows the relation between the average annual migration rate for 1955-87
and the log of income per capita in 1955. The clear positive association (simple correlation
of 0.58) suggests that net migration reacts positively to income differentials. An interesting
point is that the three outliers at the top of the figure are Chiba, Saitama, and Kanagawa,
the prefectures surrounding Tokyo.

Table 11.5 shows the results of estimating migration equations of the form of equa-
tion (1 1.10). The first row refers to the average migration rate for the whole period, 1955—
90. The coefficient on the log of initial income per capita is 0.0126 (0.0061). As expected,
net migration is negatively associated with own density (—0.0049 [0.0022]) and positively
associated with neighbor’s density (0.0190 [0.0034]). The extreme temperature variable is
insignificant. )

The next seven rows in table 11.5 show results for the 5-year subpertods beginning
with 1955-60. The estimated coefficient on initial income is significantly positive for all
subperiods, except for 1975-80, for which the coefficient is positive, but insignificant.
The joint estimate is 0.0188 (0.0019), which implies that, other things equal, a 10 percent
increase in a prefecture’s per capita income raises net in-migration by enough to raise that
prefecture’s rate of population growth by 0.19 percentage points per year. This result is
close to that found for the U.S. states..A test of the stability of the income coefficients over
time is rejected with a p value of 0.006.

The own-density variable is significantly negative, except for the first subperiod, and the
neighbors’ density variable is positive for all subperiods (significantly so for four of the
seven subperiods). The extreme weather variable is negative, but only marginally significant.
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Figure 11.11

Miggration and initial prefectural income, 1955-90. The average net migration rate for 47 Japanese prefectures
from 1955 to 1990, shown on the vertical axis, is positively related to the log of 1955 per capita income, shown on
the horizontal axis. The three prefectures surrounding Tokyo—Chiba, Saitama, and Kanagawa—had substantiaily
higher net migration rates than the values predicted by their initial levels of income.

Thus weather does not seem to play an important role in the process of internal migration
in Japan.

To summarize, some main findings are that the rate of net in-migration to a prefecture is
negatively related to own density and positively related to the density of neighbors. Holding
other things constant, migration is positively associated with initial per capita income. A
notable result is the similarity of the coefficients on income for the United States and Japan,
0.026 from the joint estimation for the U.S. states and 0.019 from the joint estimation for
Japanese prefectures.

Recall that differences in per capita income tend to dissipate at a slow rate, something
like 2.5 to 3 percent per year for the Japanese prefectures. Putting this result together with
those for migration, the implication is that net migration rates would be highly persistent
over time. The data confirm this idea: the correlation between the average migration rate
for 195570 with that for 1970-90 is 0.60.
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Table 11.5
Regressions for Net Migration into Japanese Prefectures, 1955 -90

Log of Own Neighbors'
Per Capila Extreme Population Populastion ,
Period Income Temperature Density Density R[4 ]
1955-90 0.0126 0.00014 —0.0049 0.0190 0.62
(0.0061) (0.00062) €0.0022) (0.0034) {0.0061§
195560 0.0216 -0.00014 0.0060 0.0025 (.85
(0.0036) (0.00012) (0.0013) (0.0019) [0.0038]
196065 0.0317 -0.00014 ~0.0019 0.0147 0.74
(0.0058) ©.00012) (0.0020) (0.0031) {0.0071]
1965-70 0.0344 -0.00014 ~0.0065 0.0142 0.71
(0.0070) (0.00012) (0.0017) (0.0025) 10.0066]
1970-75 0.0194 -0.00014 —0.0064 0.0114 0.53
(0.0060) (0.00012) (0.0015) (0.0023) [0.0070]
1975-80 0.0060 -0.00014 —0.0037 0.0052 0.32
0.0067) (0.00012) (0.0011) .0014) {0.0043)
198085 0.0101 -0.00014 —0.0023 0.0037 0.39
(0.0044) (0.00012) (0.0006) (0.0086) {0.0030]
1985-90 0.0148 —0.00014 —0.0026 0.0046 0.56
(0.0040) (0.00012) (0.0006) (0.0084) [0.0029]
Joint, 7 0.0188 ~0.00040 individual individual —
subperiods {0.0019) (0.00015) coefficients coefficients —

Note: The likelihood-ratio statistic for the hypothesis that the income coefficients are tbe same is 18.0, with a
p value of 0.006. The regressions use iterative, weighted least squares to estimate equations of the form

my = a +b-log(yi—r) + o1 - Temp; + ¢y - Wiyo7 + 03 7' _g + car - Districly + s, - Sy

where mj, is the net flow of migrants into prefecture i between years 1 — 7 and #, expressed as a ratio lo the
population at time ; — T; Temp; is a measure of extreme temperature, calculated as deviations of maximum
and minimum temperatures from the average temperature; 7;,_  is population density (thousands of persons per

square kilometer): x"'¢_,. is the population density of the neighboring prefectures (see the text); District; is a

sct of dummy variables for the district; and §;, is the structural variable described in the text. Alf sampies have
47 observations. (Se¢ the note to table 11.4 for additional information.)

11.8 Migraiion Across European Regions

We now estimate the sensitivity of the net migration rate to income across the regions of the
five large European countries: Germany, the United Kingdom, Italy, France, and Spain. The
dependent variable is the average net migration rate for each of the four decades starting in
1950, We are missing observations for the United Kingdom in the 1950s and 1980s and for
France in the 1980s.

We estimate a system of regressions similar to those for the United States and Japan. The
explanatory variables are the logarithm of per capita GDP or income at the beginning of
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the decade, population density at the beginning of the decade, sectoral variables (shares in
employment or GDP of agriculture and indusiry at the start of each decade), a temperature
variable, and country dummies. We estimate a system of equations for the five countries,
with the density and temperature variables restricted to have the same coefticients over 1ime
and across countries but with the coefficients ol the other variables allowed o vary over
time and across countries.

Table 11.6 reports the estimated coefficients on the log of initial per capita GDP or
income. The first column contains the estimates for the 1950s, the second for the [960s,
and so on. The last column restricts the coeflicients 1o be the same over the decades. The
first row is for Germany, the second for the United Kingdom, the third for Italy, the fourth
for France, and the fifth for Spain. The last row restricts the coefficients (o be the same for
the five countries.

Table 11.6
Regressions for Net Migration into European Regions, 1950-90, Coeflicients on the Log of Per Capita GDP
1950s 1960s 1970s 1980s Total
Germany 0.0341 0.0074 0.0040 00024 0.0076
0.0121) (0.0088) (0.0038) (0.0086) (0.0014)
United Kingdom — 0.0049 —0.0069 — ~0.0041
0.0011) 0.0013) (0.0023)
Haly 0.0182 0.0208 0.0089 0.0309 0.0117
0.0041) 0.0027) (0.0020) (0.0106) (0.0018)
France 0.0090 —0.0008 0.0097 — 0.0100
(0.0056) (0.0095) (0.0041) (0.0036)
Spain 0.0126 0.0135 0.0117 0.0031 0.0034
(0.0068) ©.0112) (0.0063) 0.0070) 0.0021)
Overall 00107 0.0072 0.0046 0.0141 0.0064
(0.0038) 0.0040) (0.0024) (0.0070) (0.0021)

Note: The regressions take the form
mije = dje + by - 10g(yij—7) e - Temp,; + 2 Fiju-1
+¢3 - (Country dummy) + ¢4 - AGij—1 + ¢5jr - WNijior

where m,;; is the net low of migrants into region i of country j between years ¢ — T and f, expressed as a ratio 1o
the population at time 7 — T°; Temp;; is the average maximum temperature; 7;;,,_ 1 is population density (thousands
of persons per square kilometer); AG,j,, _7 is the share of employment or GDP (for the 1980s) in agriculture; and
IN;j.1—1 is the corresponding share in industry. All estimation is by the iterative, seemingly unrelated procedure.
The table reports only the estimates of the coefficients ;. The numbers in the first five rows and lirst four columns
appily when each country has a different coefficient for cach period. The last column restricts the coefficients to be
the same over time for each country. The last row restricts the coeflicients o be the same across countries for each
decade. The number in the intersection of the last row and column applies when all countries and time periods
have a single coefficient.
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In contrast with the results for the United States and Japan, the coelticients onthe log of per
capita GDP or income are not precisely estimated for the Furopean countries. For Germany,
the estimated coefficient for the 1950s is positive and significant, 0.031 (0.012), whereas
those for the other three decades are insignificant. The estimated income coefficients (or
[taly are significantly positive, but many of those for the United Kingdom, France, and
Spain are insignificant.

If we restrict the coefficients to be the same over time but allow them to vary across
countries, the estimated values are 0.0076 (0.0014) for Germany, —0.004! (0.0023) for
the United Kingdom, 0.0117 (0.0018) for Italy. 0.0100 (0.0036} for France, and 0.0034
(0.0021) for Spain. If we restrict the coefficients to be the same across countries but allow
them to vary over time, the estimated values are 0.0107 ((0.0038) for the 1950s, 0.0072
(0.0040) for the 1960s, 0.0046 (0.0024) for the 1970s, and 0.0141 (0.0070) for the 1980s.
Finally, if we restrict the coefficients to be the same across countries and over time, we get
the estimate 0.0064 (0.0021). Although this estimate is significantly positive, the size of the
coefficient is much smaller than the comparable values for the United States (0.026) and

Japan (0.019). The main finding. therefore, is that the migration rate for European regions
is positively related to per capita GDP or income, but the magnitude of the relation is weak,
and the coefficients cannot be estimated with great precision.

11.9 Migration and Convergence

We found in chapter 9 that the migration of workers with low human capital from poor to
rich economies tended to speed up the convergence of per capita income and product. The
convergence coefficients estimated in growth regressions would include this effect from
migration. In this section we attempt to estimate the effect of migration on convergence
by including the net migration rate as an explanatory variable in the growth regressions. If
migration is an important source of convergence—and if we can treat the migration rate as
exogenous with respect to the error term in the growth equation—the estimated convergence
coefficient, 8, should become smaller when migration is held constant.

We enter the contemporaneous net migration rate in growth regressions in table 11.7.
The first row reports the estimated speed of convergence, 8, for the U.S. states. The sample
period, 1920-90, is divided into seven ten-year subperiods. The regression includes period-
specific coefficients for constant terms, dummies for the four major census regions, and the
structural variable discussed before. The coefficient on the log of initial per capita income
is constrained to be the same for each subperiod. This setup parallels the joint estimation
shown in table 11.1, column 3, except for the elimination of the two early subperiods.

Column | of the table reports the estimate of § when the migration rate is not included in

493
Empirical Analysis of Regional Data Sets

Table 11.7
Migration and Convergence
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is that these determinants of migration do not enter directly into the growth equation.) The
results, contained in column 3 of table 11.7, show an insignificant coefficient on the migra-
tion rate, —0.006 (0.048), and an estimated 8 coefficient, 0.0174 (0.0033), that is slightly
lower than that in column 1. These results suggest that migration does not account for a
large part of 8 convergence for the U.S. states.

The second row of table 11.7 applies the same procedure to Japan. The first column reports
the joint estimate of 8 over seven five-year periods when the migration rate is excluded as a
regressor. The estimate of 8, 0.0312 (0.0040), is the same as that in column 3 of table 11.2.
When the migration rate is added in column 2 of table 11.7, the estimated coefficient on
migration is positive and similar to that found for the United States, 0.0907 (0.0041), and
the estimate of 8 increases to 0.0340 (0.0044). In column 3, which includes instruments
for migration, the estimated coefficient on migration is insignificant, —0.11 (0.11), and the
estimate of 8, 0.0311 (0.0042), is essentially the same as that in column 1. Hence, as for
the U.S. states, migration does not appear to be a major element in 8 convergence for the
Japanese prefectures.

The last five rows of table [1.7 apply an analogous procedure to the five large European
countries. The main findings are similar to those for the United States and Japan in that
the estimated g coefficients do not change a great deal when migration rates are held
constant. One surprising result is that the net migration rates are insignificant in the OLS
regressions for the European regions, whereas the usual endogeneity story suggests positive
coefficients. It may be that the regional net migration rates are not well measured for the
European countries, a possibility that would also account for the difficulties in the estimated
migration equations in these cases.

A second prediction from the migration theory in chapter 9 is that economies with higher
sensitivity of net migration to per capita income will have higher convergence coefficients,
B. To check this possibility, we plot in figure 11.12 the estimated 8 coefficients against the
estimated coefficients of the log of per capita GDP or income from the migration equations.
The figure has seven data points, corresponding to the United States, Japan, Germany, the
United Kingdom, Italy, France, and Spain. The figure shows a weak positive relation between
the two coefficients; the correlation is 0.27.!> The imprecision with which the coefficients
in the migration equations are estimated for the European countries suggests that this relation
should be interpreted with caution. See Braun (1993) for further discussion of this approach.

15. The B coefficients for France and the United Kingdom are those estimated over the same subperiods for which
the migration data are available. The B coefficient estimated over the full sample is lower for France and higher
for the United Kingdom. If we use these alternative estimates of S, the correlation with the coefficient from the
migration equations is slightly higher, 0.32.
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Figure 11.12

In%ome Coefficient of Migration and Speed of Convergence. The vertical axis shows the estimated coefficient
on the log of per capita income or GDP from migration regressions. The horizontal axis has the estimated 8
convergence coefficient from growth regressions. The seven data points—for the United States, Japan, Germany,
the United Kingdom, Italy, France, and Spain—exhibit a positive relation, as predicted by the theory of migration
and growth.

11.10 B Convergence in Panel Data with Fixed Effects

Following Islam (1995), a number of researchers have attempted to estimate the speed of
convergence using panel data sets and variants of fixed-effects estimation. Casell, Esquivel,
and Laffort (1996), for example, use panel data for a cross section of countries, while
Canova and Marcet (1995) use regional data. One claimed advantage of panel data over
cross sections is that one does not need to hold constant the steady state because it can be
implicitly estimated using fixed effects. The main result is that estimates of the speed of
convergence from panel data with fixed effects tend to be much larger than the 2 percent-
per-year number estimated from cross sections or panels without fixed effects. Speeds of
convergence in the range of 12 to 20 percent per year are not uncommon in this literature.
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One potential problem with the fixed-effects approach is that, in order to work, one
needs to include many time-series observations. This procedure can be carried out only
by shortening the time periods within which the growth rate is computed. In other words,
the dependent variable tends to be the yearly growth rate or the growth rate over two to
five years. The problem with such short time spans is that the growth rates tend to capture
short-term adjustments around the trend rather than long-term convergence. In particular,

the existence of business cycles tends to bias upward the estimates of speeds of convergence.

In this context, Shioji (1997) provides evidence that, once one corrects for the measurement
error introduced by business cycles, the estimated speed of convergence from panels with
fixed effects is still close to 2 percent per year.

11.11  Conclusions

We studied the behavior of the U.S. states since 1880, the prefectures of Japan since 1930,
and the regions of eight European countries since 1950. The results indicate that absolute g
convergence is the norm for these regional economies. That is, poor regions of these coun-
tries tend to grow faster per capita than rich ones. The convergence is absolute because it
applies when no explanatory variables other than the initial level of per capita product or
income are held constant. -

We can interpret the results as consistent with the neoclassical growth model described
in chapters 1 and 2 if regions within a country have roughly similar tastes, technologies, and
political institutions. This relative homogeneity generates similar steady-state positions. The
observed convergente effect is, however, also consistent with the models of technological
diffusion described in chapter 8.

One surprising result is the similarity of the speed of 8 convergence across data sets. The
estimates of 8 are around 2-3 percent per year in the various contexts. This slow speed of
convergence implies that it takes 25-35 years to eliminate one-half of an initial gap in per
capita incomes. This behavior deviates from the quantitative predictions of the neoclassical
growth model if the capital share is close to one-third. The empirical evidence is, however,
consistent with the theory if the capital share is around three-quarters.

The analysis of migration indicates that the rate of net migration tends to respond pos-
itively to the initial Ievel of per capita product or income, once a set of other explanatory
variables is held constant. This relation is clear for the U.S. states and the Japanese prefec-
tures but is weaker for the regions of five large European countries. We also check whether
the presence of A convergence in the regional data can be explained by the behavior of net
migration. The evidence here is not definitive but suggests that migration plays only a minor
role in the convergence story.
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11.12  Appendix on Regional Data Sets

We describe data for the U.S. states, regions of eight European countries (Germany, the
United Kingdom, Jtaly, France, the Netherlands, Belgium, Denmark, and Spain), and pre-
fectures of Japan. Data for regions of other countries, such as Argentina, Brazil, China,
India, Mexico, and the USSR, are also avatlable. Additional information is available by city
and county; see, for example, Ades and Glaeser (1995).

11.12.1 Data for U.S. States

Table 11.8 shows a sampling of the data for the U.S. states (shown on the U.S. map in
figure 11.13). Figures on nominal personal income and nominal per capita personal income
are available by state since 1929 from the U.S. Commerce Department (Bureau of Economic
Analysis, 2002; updates appear in issues of U.S. Survey of Current Business). The concept
of personal income used in these regional accounts corresponds to that employed in the
national accounts. The numbers are reported annually, but values prior to 1965 are based
on interpolations of estimates constructed at approximately five-year intervals. Data are
reported with and without transfer payments. Figures on gross state product are available
annually since 1963 (from issues of U.S. Survey of Current Business).

Reliable data on price levels are unavailable by state, although some information exists for
cities. We have computed real income by dividing the nominal figures on personal income
by the national values of the consumer price index (1982-84 = 1.0). (We used the figures
from Citibase for all items except shelter since 1947. Before 1947, we used the overall
index from U.S. Department of Commerce, 1975, series E135.) As long as the same index
is used at each date for each state, the particular index chosen does not affect the relative
levels and growth rates across the states.

Earlier income figures are reported by Easterlin (1960a, 1960b)for 1920 (48 states), 1 900
(48 states or territories), 1880 (47 states or territories, with Oklahoma excluded), and 1840
(29 states or territories). These data are exclusive of transfer payments, and the figures for
1840 do not cover all components of personal income. Estimates of the consumer price
index for all items (U.S. Department of Commerce, 1975, series E135) are used to deflate
these earlier values.

For the census years since 1930, labor earnings (including those from self-employment)
can be broken down into nine sectors: agriculture; mining; construction; total manufacturing;
transportation and public utilities; wholesale and retail trade; finance, insurance, and real
estate; services; and government and government enterprises. For periods before 1930,
information is available on the fraction of income originating in agriculture.
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Table 11.8
Data for U.S. States

Real Per Capita Real Per Capita Growth Rate of Population, Population, Growth Rate of ~ Net Migrants,

Income, 1900 ($1000s, Income, 2000 ($1000s, Real Per Capita 1900 1990 Population, 1900-89
State 1982-84 base) 1982-84 base) Income (millions) (millions) 1900-90 (millions)
AL  Alabama 1.00 12.95 0.0256 1.829 4,046 0.0088 —-1.32
AZ  Arizona 3.69 13.79 0.0132 0.093 3.681 0.0409 2.03
AR Arkansas 1.03 12.11 0.0246 1.312 2.353 0.0065 —-1.14
CA  California 4.20 17.78 0.0144 1.403 29.956 0.0340 16.59
CO  Colorado 3.66 17.90 0.0159 0.529 3.302 0.0203 1.11
CT  Connecticut 3.19 22.55 0.0196 0.908 3.290 0.0143 0.76
DE  Delaware 2.52 17.15 0.0192 0.185 0.669 0.0143 0.18
FL.  Florida. 1.29 15.36 0.0248 0.529 13.044 0.0356 9.37
GA  Georgia 0.98 15.33 0.0275 2222 6.504 0.0120 -0.28
D Idaho 2.54 13.04 0.0164 0.154 1.011 0.0209 0.04
I Dlinois 299 17.57 0.0177 4.822 11.443 0.0096 -0.17
IN Indiana 2.09 14.81 0.0196 2.516 5.554 0.0088 -0.30
IA Towa 233 14.55 0.0183 2.232 2.780 0.0024 —1.41
KS  Kansas 2.15 15.12 0.0195 1.470 2.480 0.0058 -0.65
KY  Kentucky 1.38 13.27 0.0226 2.147 3.690 0.0060 —1.54
LA  Louisiana 1.47 12.71 0.0216 1.382 4.211 0.0124 -0.52
ME  Maine 2.16 14.02 0.0187 0.694 1.231 0.0064 —0.11
MD  Maryland 2.34 18.55 0.0207 1.188 4.802 0.0155 1.26
MA  Massachusetts 349 20.81 0.0179 2.850 6.020 0.0083 0.14
ML  Michigan 2.13 16.04 0.0202 2.421 9.314 0.0150 0.62
MN  Minnesota 2.38 17.61 0.0200 1.737 4.390 0.0103 -0.34
MS  Mississippi 0.97 11.51 0.0247 1.551 2.574 0.0056 -1.62
MO Missouri 2.16 15.00 0.0194 3.107 5.127 0.0056 —0.83
MT Montana 477 12.44 0.0096 0.226 0.799 0.0140 -0.07
NE  Nebraska 243 15.26 0.0184 1.066 1.580 0.0044 -0.71
NV Nevada 4.54 16.31 0.0128 0.035 1.224 0.0395 0.79
NH New Hampshire 2.46 18.23 0.0200 0.412 1.111 0.0110 031
NJ  New Jersey 319 20.48 0.0186 1.884 7.735 0.0157 220
NM New Mexico 1.70 12.08 0.0196 0.180 1.520 0.0237 0.16
NY New York 37 19.04 0.0164 7.269 18.002 0.0101 1.13
NC North Carolina 0.82 14.81 0.0289 1.894 6.653 0.0140 -0.30
ND North Dakota 2.40 13.67 0.0174 0.312 0.637 0.0079 -0.49
OH Ohio 2.55 15.40 0.0180 4.158 10.859 0.0107 0.14
OK Oklahoma 1.31 13.01 0.0230 0.670 3.146 0.0172 -0.19
OR  Oregon 2.85 15.26 0.0168 0.395 2.861 0.0220 1.27
PA  Pennsylvania 2.88 16.30 0.0173 6.302 11.893 0.0071 ~1.99
RI  Rhode Island 3.36 16.09 0.0157 0.429 1.005 0.0095 0.05
SC  South Carolina 0.86 13.22 0.0273 1.340 3.498 0.0107 -0.75
SD  South Dakota 2.11 14.34 0.0192 0.381 0.696 0.0067 -0.43
TN  Tennessee 1.16 14.28 0.0251 2.021 4.887 0.0098 ~0.46
TX Texas 1.58 15.30 0.0227 3.049 17.055 0.0191 3233
UT Utah 2.11 12.89 0.0181 0.272 1.729 0.0206 0.06
VT Vermont 2.19 14.85 0.0191 0.344 0.565 0.0055 -0.05
VA  Virginia 1.27 17.14 0.0260 1.854 6.213 0.0134 0.61
WA  Washington 3.40 17.18 0.0162 0.496 4.909 0.0255 2.16
WV  West Virginia 1.35 12.01 0.0219 0.959 1.790 0.0069 -1.10
WI  Wisconsin 2.05 15.49 0.0202 2.058 4.906 0.0097 -0.33
WY Wyoming 3.57 15.14 0.0144 0.089 0.452 0.0181 0.03

Notes: The two-letter abbreviation (zip code) for each of the 48 states is shown before the state name.
The U.S. Census regional classifications are as follows:

Northeast: ME, NH, VT, MA, RI, CT, NY, NJ, PA.

South: DE, MD, VA, WV, NG, SC, GA, FL, KY, TN, AL, MS, AR, LA, OK, TX.

Midwest: MN, IA, MO, ND, SD, NE, KS, OH, IN, IL, MI, W1.

West: MT, ID, WY, CO, NM, AZ, UT, NV, WA, OR, CA.
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“Table 11.9
(Continued) Net Migrants
Real Per Capita GDP,  Real Per Capita GDP,  Growth Rate of Real : i Various
1950 Propoat;tnionate 1990 Proportionate Per ;apna GDP l;;g&anon. l;ggglatlon, Growth Rate of  Pariode?
"Deviation from Deviation from Deviation f'°"2 illions) (millions) Population” (millions)
Region Country Mean® Country Mean® Country Mean (m
. 0.0007 0.735 0.889 0.0048 -0.03
27. Trentino-Alto Adige ~ 0.19 0.22 0.0050 3.841 4392 0.0034 ~0.35
28. Veneto -001 0.19 0.0030 1.200 1202 0.0000 -0.58
29. Fruili-Venezia-Giulia.  0.12 0.24 0.0027 1.509 3.925 0.0028 0.19
30. Emilia-Romagna 0.17 0.28 0.0036 1352 133 0.0015 —0.13
31. Marche -0.06 0.08 —0.0006 3.152 3.562 0.0031 029
32. Toscana 0.16 0.13 0.0016 0.806 0.822 0.0005 =007
33. Umbria -0.04 0.03 0.0008 3.322 5.181 0.0111 0.62
34. Lazio 0.21 0.17 Tl 4276 5.831 0.0078 -0.88
35. Campania ~0.29 -0.33 0054 1.238 1.269 0.0006 ~027
36, Abruzzi -0.32 —-0.10 0.00 0.336 —0.0042 —0.14
. Abruzzi ~0.20 0.0071 0.398 - —0.77
37. Molise —0.49 03 0.0017 3.181 4.076 0.0062 0.
38. Puglia —033 o2 0.0016 0.617 0.624 0.0003 =025
39. Basilicata -047 —041 0.0005 1.987 2153 0.0020 =079
40. Calabria —048 —oae —0.0012 4422 5.185 0.0040 -1.08
41. Sicilia —8-?2 “8'33 ~0.0027 1.259 1661 0.0069 =023
42. Sardegna - )
France : 7.009 10.227 0.0094 1.02
43, Region Parisienne 061 0.50 888%2 1.110 1.34] 0.0047 —0.06
44. Champagne-Ardenne  0.05 008 ~0.0026 1.355 1.804 0.0072 0.04
45. Picarde 0.05 -0.05 ~0.0020 1.232 1.731 0.0085 0.03
46. Haute Normandie 0.13 0.05 0.0049 1758 2363 0.0074 0.30
47. Centre -0.18 0.02 00049 1758 e 00048 —010
48. Basse Normandie -0.14 —-0.04 0.0025 1.376 1.602 0.0038 0.10
49. Bourgogne -0.11 -ool —0.0067 3309 3.945 0.0044 -039
50. Nord-Pas de Calais 0.17 -0.09 —0.0067 1.874 2.293 0.0050 -0.22
51. Lormraine 0.24 ~003 —0.0014 1.196 1619 0.0075 0.15
52. Alsace 0.19 0.14 —0.0005 0.841 1.092 0.0065 0.02
53. Franche-Comte 0.2 s 0.0020 2.293 3.048 0.0071 0.03
54. Pays de la Loire -0.11 ~0.03 ‘

55, Bretagne -0.20 -0.08 0.0030 2.358 2.784 0.0042 0.03
56.  Poitou-Charente -0.25 -0.11 0.0035 1.379 1.588 0.0035 -0.03
57.  Aquitaine -0.15 0.00 0.0036 2.206 2.787 0.0058 0.35
58.  Midi-Pyrénées -0.27 ~0.10 0.0043 1.982 2.423 0.0050 0.29
59.  Limousin ~0.05 —0.14 —0.0023 0.760 0.719 -0.0014 0.04
60.  Rhone-Alpes 0.12 0.09 —0.0009 3.580 5.338 0.0100 0.77
6. Auvergne -0.06 -0.09 —0.0009 1.261 1314 0.0010 0.03
62.  Languedoc-Roussillon -0.18 -0.14 0.0008 1.453 2.119 0.0094 0.48
63/64. Provence-Alpes—

Cotes d’ Azur-Corse 0.08 -0.01 —0.002 2533 4.499 0.0144 1.52

Netherlands
65.  Noord ~0.10 0.04 0.0035 1215 1.596 0.0068 —
66.  Oost -0.12 -0.13 —0.0003 1.788 3.050 0.0134 —

67.  West 0.18 0.12 —0.0015 ' 5155 6.996 0.0076 —
68.  Zuid 0.04 —0.03 ~0.0016 2.007 3.306 0.0125 —
Belgium
69.  Vlaanderen —0.14 0.09 0.0057 3.963 4.486 0.0030 —
70.  Wallonie -0.01 -021 —0.0049 2.841 3.251 0.0034 —

71.  Brabant 0.15 0.12 -0.0008 1.849 2.248 0.0049 —
Denmark
72.  Sjalland-Lolland-

Falster-Bormholm 0.08 0.19 0.0031 1.984 1.718 —0.0040 —

73.  Fyn -0.02 -0.14 ~0.0034 0.396 0.586 0.0109 —
74.  Iylland -0.06 ~0.05 0.0003 1.902 2.817 0.0109 —

th
3

Table continued
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Table 11.9
(Continued )
" Real Per Capita GDP, Real Per Capita GDP, Growth Rate of Real Net Migrants,

1950 Proportionate 1990 Proportionate Per Capita GDP Population,  Population, Various

Deviation from Deviation from Deviation from 19507 1990¢ Growth Rate of  Periods®
Region Country Mean? Country Mean® Country Mean® (millions) (millions) Population/ (millions)
Spain
75. Andalucia -0.29 -0.29 0.0002 5.621 6.920 0.0053 —1.67
76. Aragon . 0.01 0.08 0.0022 1.095 1.213 0.0026 -0.12
77. Asturias 0.17 —0.06 —0.0074 0.893 1.126 0.0059 -0.02
78. Balears 0.08 034 0.0080 0423 0.682 0.0122 0.12
79. Canaries —0.22 -0.03 0.0059 0.800 1.485 0.0158 0.02
80. Cantabria 0.18 0.05 —0.0043 0.406 0.527 0.0067 -0.04
81. Castilla-L.a Mancha —043 -0.26 0.0052 2.028 1.714 —0.0043 —0.91
82. Castilla-Leon - -0.13 —0.11 ) 0.0007 2.864 2.626 —0.0022 ~0.97
83. Catalunya 0.34 0.25 —0.0029 3271 6.008 0.0156 1.42
84. Euskadi (Basque) 0.74 0.11 -0.0197 1.075 2.129 0.0175 T 043
85. Extremadura ~0.58 ~0.43 0.0047 1.366 1.129 —0.0049 —0.70
86. Galicia ~0.36 —0.20 0.0050 2.604 2.804 0.0019 -0.41
87. Madrid 0.48 0.34 —0.0042 1.956 4.876 0.0234 1.40
88. Murcia —0.35 —0.15 0.0062 0.759 1.027 0.0078 -0.16
89. Navarra 0.19 0.13 -0.0019 0.384 0.521 0.0078 0.00
90. LaRioja 0.11 0.14 0.0008 0.230 0.260 0.0032 -0.03
91. Valencia 0.05 0.10 0.0014 2316 3.787 0.0126 0.54

2Difference of logarithm of per capita GDP in 1950 from country mean in 1950. Values for Spain are for 1955.

bDifference of logarithm of per capita GDP in 1990 from country mean in 1990, Values for Denmark are for 1985 and for Spain are for 1987.

“Difference of annual growth rate of per capita GDP from 1950 to 1990 from country mean growth rate. Values for Denmark are for 1950-85 and for Spain are for
1955-87.

4Values for Spain are for 1951.

€ Values for Denmark are for 1986.

/ Annual growth rate of population from 1950 to 1990. Values for Denmark are for 1950-86 and for Spain are for 1951-90.

#Time periods are 1954-88 for Germany, 196185 for the United Kingdom, 1951-87 for Italy, 1954-82 for France, and 1951-87 for Spain.

Note: The numbers for the regions correspond to those used for the map in figure 11.4.
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Chapter 11

Ve do not have regional price data. In addition, the figures on GDP are sometimes pro-
ed in an index form that are not comparable across countries. We have therefore focused
regional GDP figures that are expressed as deviations from means for the respective
ntries.

ior the countries other than Spain, Molle, Van Holst, and Smits (1980) provide a break-
n of employment into three sectors—agriculture, industry, and services—for 1950,
0, and 1970. For the other years, Eurostat provides a division of GDP into the same
e sectors. For Spain, the breakdown of GDP into these three components for the various
‘s is available from Banco de Bilbao (various issues).

et migration flows are computed for the five larger countries from information on pop-
‘on, births, and deaths. The national sources are as follows: Germany: Statistischen
desamtes, Statistisches Jahrbuch fiir die Bundesrepublik Deutschland, vartous years.

ed Kingdom: Population Trends 51, Spring 1988. France: INSEE, Statistiques et Indi-

urs des Regions Francaises, 1978; INSEE, Donnes de Demographie Regionale 1982,

. Italy: ISTAT, Sommario Storice di Statistiche Sulla Populazzione: Anni 1951-1987,

). Spain: INE, Anuario Estatistico de Espafia, various issues.

2.3 Data for Japanese Prefectures

for Japanese prefectures are in table 11.10 (a prefectural map is shown in figure 11.15).
figures on income are collected since 1955 by the Economic Planning Agency (EPA)
pan. The accounts are constructed in accordance with the #1983 standardized system
efectural accounts,” so that all figures are comparable. The aggregate of the income
:s from the 47 prefectures coincides theoretically with Japan’s national income. The
ire collected annually and published in the Annual Report on Prefectural Accounts. For
, we obtained income data by prefecture from National Economy Studies Association.
o not have price data by prefecture and therefore use national price indexes to deflate
region’s income.

ta on population are from the Statistics Bureau at the Management and Coordination

cy. The principal source of these figures is the quinquennial population census taken

: Statistics Bureau.

gration data are collected by the Statistics Bureau. These figures are derived from the

Resident Registers and the Statistical Survey on Legal Migrants. These data exclude
1s without Japanese nationality.
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2.41
1.93
Q.10
2.58
1.27
Table continued

-0.16
0.86

Net Migrants,
1955-90°
{millions)
-0.76
-0.36
-0.41
-0.11
~0.44
~0.38
-0.57
—0.63
0.09
-0.13
-0.15
-0.33
-0.02
-0.16
~0.09
-0.07
-0.11
-0.13
0.09
0.02

Growth
Rate of
Population
0.0030
0.0012
—0.0003
0.0046
-0.0019
-0.0016
—0.0001
-0.0002
0.0055
0.0033
0.0035
0.0188
0.0166
0.0071
0.0184
0.0007
0.0060
0.0016
0.0034
0.0047
0.0104
0.0032
0.0015
0.0065
0.0054
0.0117

1990

(millions)

Population,

Population,
1955
(millions)
4,784
1.391
1.437
1,748
1.362
1.370
2.120
2.501
2.099
1.571
1.624
2279
2.225
8.016
2.901
0.819
2.050
2.638
1.028
0.964
1.599
3.779
1.505
0.758
0.857
1.928
4.586

Real Per Capita

Growth Rate of
Income”
0.0484
0.0525
0.0557
0.0543
0.0500
0.0537
0.0561
0.0520
0.0580
0.0561
0.0562
0.0519
0.0588
0.0472
0.0474
0.0593
0.0558
0.0530
0.0518
0.0527
0.0502
0.0467
0.0533
0.0519
0.0532
0.0461
0.0430

Real Per Capita
Income, 1990
(million yen,
1985 base)

2.396
2.045
2.003
2.453
2.137
2206
2.413
2.398
2.648
2.788
2.640
2.825
2.880
4.238
2.960
2.557
2633
2.883
2616
2.608
2.551
2971
2.621
2.429
2.794
2.664
3.190

1985 base)
0.369

0.367
0371

0.337

0.339
0.388
0.348

0518

0.460
0.368
0.811

0.564
0.321

0.374
0452
0426
0412
0.441
0579
0406
0.395
0.434
0.531
0.709

Income, 19559
0.298

Real Per Capita
(million yen,

0.441

0.326

Gifu
22. Aichi
23. Mie
24, Fukui
25. Shiga

Akita

Hokkaido
2. Aomori
Twate
4. Miyagi
Fukushima

8. Niigata

9, [Iharaki
10. Tochigi
t1. Gumma
12. Saitama
" 13. Chiba

14, Tokyo

15. Kanagawa
16, Yamanashi
17. Nagano
18. Shizuoka
19, Toyama
20. Ishikawa
27. Osaka

26. Kyoto

1.

3.

5.

6. Yamagata
7.

21,

Data for Japanese Prefectures

Table 11.10

Prefecture



Table 11.10

(Continued)

Real Per Capita Real Per Capita

Income, 1955° Income, 1990 Growth Rate of Population, Population, Growth Net Migrants,

(million yen, (million yen, Real Per Capita 1955 1990 Rate of 1955-90¢

" Prefecture 1985 base) 1985 base) Income? (millions) (millions) Population (millions)

28. Hyogo 0.618 2.668 0.0418 3.660 5.405 0.0071 0.29
29. Nara 0.418 2.190 0.0473 0.777 1.375 0.0104 0.30
30. Wakayama 0.438 2.109 0.0449 1.012 1.074 0.0011 -0.15
31. Tottori 0.373 2.193 0.0506 0.615 0.616 0.0000 -0.12
32. Shimane 0.336 2.121 0.0527 0.931 0.781 -0.0032 -0.26
33. Okayama 0413 2.555 0.0521 1.716 1.926 0.0021 —-0.16
34. Hiroshima 0478 2,678 0.0492 2.180 2.850 0.0049 0.00
35. Yamaguchi 0.445 2.299 0.0469 1.619 1.573 —0.0005 -0.34
36. Tokushima 0.344 2.297 0.0542 0.898 0.832 —0.0014 —0.20
37. Kagawa 0.394 2.524 0.0531 0.951 1.023 0.0013 -0.11
38. Ehime 0.397 2.157 0.0483 1.563 1.515 —0.0006 -0.37
39. Kochi 0.367 2.025 0.0484 0.917 0.825 -0.0019 —0.18
40. Fukuoka 0.490 2.502 0.0466 3.867 43811 0.0040 —0.28
41. Saga 0.368 2.131 0.0502 0.982 0.878 -0.0020 —0.34
42, Nagasaki 0.369 2.027 0.0487 1.795 1.563 —0.0025 —0.65
43. Kumamoto 0.326 2294 0.0558 1.898 1.840 —0.0006 -047
44. Oita 0.316 2218 0.0556 1.298 1.237 —0.0009 —0.30
45. Miyazaki 0.317 2.078 0.0537 1.155 1.169 0.0002 -0.28
46. Kagoshima 0.255 2019 0.0591 2.084 1.798 —0.0027 —0.68
47. Okinawa 0.282 1.880 0.0542 0.801 1.222 0.0077 —-0.01

2Value for Tochigi is for 1960.
bvalue for Tochigi is for 1960-90.
Value for Okinawa is for 1965-90.
Notes: The numbers for the prefectures correspond to those used for the map in figure 11.15. The district classifications are as follows: District 1 (Hokkaido-Tohoku),
prefectures 1-8. District 2 (Kanto-Koshin), prefectures 9-17. District 3 (Chubu), prefectures 18-24. District 4 (Kinki), prefectures 25-30. District 5 (Chugoku), prefectures
31-35. District 6 (Shikoku), prefectures 36-39, District 7 (Kyushu), prefectures 4047.
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